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Abstract
GENERATING EFFECTIVE NATURAL LANGUAGE INSTRUCTIONSBASED ON AGENT EXPERTISEJuliet C. BourneSupervisor: Dr. Bonnie WebberThe automatic production of Natural Language instructions, i.e. those suitable for useby humans, has become an active area of research in recent years. In order for computer-generated instructions to be useful, they must be e�ective in accurately conveying theactions that are to be carried out by an agent. Conveying termination information, orwhen to stop performing an action, has been the focus of my dissertation research as itis an important part of generating e�ective instructions. I have done a corpus analysis of3000 simple step-by-step maintenance instructions to study how termination informationis expressed in naturally occurring texts. Using insights gained from the corpus analysisas well as the simulation of virtual agents carrying out similar tasks, I have speci�ed anaction representation, rules for reasoning about action information (particularly termina-tion information), and some di�erences between agents with di�erent levels of expertise.SPUD, a Natural Language generator developed at the University of Pennsylvania, takesthis information, as well as information about the syntactic constructions used in instruc-tions, and reasons about the best way to convey action information in e�ective instructionsfor particular agents.
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Chapter 1
Introduction
The automatic production of Natural Language instructions, i.e. those suitable for useby humans, has become an active area of research in recent years. The costliness ofproducing instruction manuals for complex systems, not to mention keeping the manualsupdated, motivates the exploration into automating the process. On-line and interactiveinstruction systems are also gaining popularity for their ease-of-use and cost e�ectiveness.For any method of generating instructions to be successful, it must pay attention to thequality of the instructions that it produces or else what it produces will be useless for thepurpose of replacing human-generated instructions. [Dixon, 1987] notes that when readinginstructions, the reader must construct a mental representation (a plan) which is adequatefor performing the given task. The constructed plan is only appropriate if it allows thereader to perform the task correctly and e�ciently. Therefore, generated instructionsmust be e�ective in conveying the actions that are intended to be carried out so that thereader can form the appropriate plan. E�ective instructions are those that convey all ofthe necessary information about performing the intended actions; if one piece of necessaryinformation is missing, an instruction leaves open the possibility that an incorrect actionwill be performed. Therefore, merely automating the generation of instructions is notenough. Generating e�ective instructions should be at the heart of any system attemptingto replace humans in producing instruction manuals and interactive instruction systems.One aspect of Natural Language Generation is the description of entities so that theyare distinguished from all other entities. Entities include objects, events, actions, and states1



of the world. Much attention has been paid to objects and the generation of their referringexpressions, descriptions meant to pick out or refer to an entity. Creating a referringexpression involves iteratively including properties which distinguish an object from thegreatest number of its remaining distractors (other objects that it could be confused with)until the description can refer only to the intended object. For instance, if there aretwo blocks, one red and one blue, the referring expression for either of the blocks has toinclude its color property to distinguish it from the other block. The problem of generatingreferring expressions for entities other than objects has not been explored as thoroughly.An important part of generating instructions is distinguishing the actions that are to becarried out from similar actions. The generation of referring expressions for actions entailsrepresenting action information, distinguishing one action from another, and having ageneration system that can consider information provided at the clause level (i.e. in awhole sentence) and can use multiple clauses (i.e. sentences with subordinate clauses) todescribe actions.Generating a distinguishing referring expression for an action is important, howeverit does not fully address the problem of producing e�ective instructions. Beyond distin-guishing an action from other actions, e�ective instructions need to provide informationthat supports the performance of the action. Research involving the simulation of agentsperforming tasks helps de�ne necessary action information which needs to be represented.The information that must be provided in order to have a simulated human agent carryout an action correlates, at some level, with the information that must be provided inNatural Language instructions to a human. When to stop performing an action representsa vital piece of action information. Without this termination information, an agent (simu-lated or otherwise) does not know when to stop performing an ongoing action. The actionrepresentation must therefore support termination information so that this informationcan be conveyed to the reader. Di�erent aspects of an action can provide terminationinformation, such as a post-condition or a path. Reasoning about action information todetermine the implied termination information is therefore an important part of ensuringan action's performability.The need for such reasoning requires that the system used for implementing the action2



representation and generating instruction be powerful enough to support the formaliza-tion and use of rules for reasoning. Given the common need for action performance, asingle representation of action information suitable for both simulated agents and NaturalLanguage should be feasible. Such a representation would be independently-motivated, inthat it would not be useful only for Natural Language purposes. It would represent allaspects of actions needed for performance and therefore it would support the generation ofe�ective instructions. The Natural Language generator SPUD, developed at the Univer-sity of Pennsylvania [Stone, 1998], has the representational and reasoning power neededfor generating e�ective instructions. SPUD's method of generation allows it to exiblyproduce descriptions of actions that are linguistically-sound, not ad hoc. Using SPUD'sability to reason about the information conveyed by action descriptions, even partial ones,generating e�ective instructions is reduced to specifying rules for reasoning about actioninformation and encoding the ways of conveying action information.In the rest of this chapter, some introductory details are presented regarding the mainareas of this dissertation. First, expressions of action termination are introduced in moredepth. Next, action and agent representations and their relation to e�ective instructionsare discussed. Finally, the method of generation is briey outlined. This chapter ends withthe claim of this dissertation, an outline of the contributions of this dissertation work, andan overview of the rest of the dissertation.1.1 Expressing Action TerminationAs alluded to earlier, an important goal of generating Natural Language instructions is todescribe actions fully and accurately so that they can be carried out correctly. This goalis particularly important to the generation of written instructions where the \speaker"(i.e. author) and the \hearer" (i.e. reader) are separated spatially and temporally. In thecase of instruction manuals, the hearer does not have the opportunity to ask questions toclarify the action to be performed and the speaker likewise does not get any feedback fromthe hearer about the success of the instructions. Therefore, attention must be paid to thee�ectiveness of the instructions generated to be sure that they can be carried out correctly.3



Attention must also be paid to the e�ciency or conciseness of the instructions. That is,all the necessary information should be included in an e�cient manner in order to avoidconfusion caused by extra information. Understanding how information about an actionis expressed, which ways of expressing information are used for which purposes, etc., isessential to generating instructions that describe actions both e�ectively and e�ciently.How is action termination expressed in instructions? The answers have been foundthrough the analysis of naturally-occurring texts in terms of linguistic constructions (i.e.ways of expressing information in Natural Language) used to describe actions. Linguisticconstructions include required verb arguments (e.g. \Rotate the dial"), optional verbadjuncts (e.g. \Rotate the dial 90 degrees"), prepositional phrases (e.g. \Rotate thedial to the 90-degree mark"), until clauses (e.g. \Turn screw until it is loose"), etc. Allare used to describe necessary pieces of information about actions; in fact, all of thelinguistic constructions mentioned above can be used to provide termination information.If termination information is missing, then an instruction may be ine�ective unless itis known that the hearer can infer the correct termination information from the actioninformation presented. Termination information can be conveyed both through explicittermination condition phrases, e.g. until clauses, as well as implicitly through phrasesexpressing other parts of the action instance. Therefore, knowing how action informationcan be expressed is necessary to generate e�ective instructions.Expressing action information has been explored in several ways by other researchers.For instance, the issue of lexical choice, choosing the words to describe an entity, hasbeen addressed by a number of researchers (e.g. [Reiter, 1991; Kosseim and Lapalme,1995; Elhadad et al., 1997]). The generation of referring expressions for objects at variouspoints in a set of instructions, has also been explored [Dale, 1992]. Expressing the purposeof an action, i.e. \Do x to do y," has been examined by several researchers as well [DiEugenio, 1993; Vander Linden, 1994; Kosseim and Lapalme, 1995; Vander Linden andMartin, 1995; Di Eugenio and Webber, 1996; Hartley and Paris, 1996]. Despite all ofthis previous work, discussed in Chapter 2, the issue of expressing an action's terminationremains unexplored.Before discussing how termination information is expressed, I should clarify the terms4



which I will be using to refer to actions and their descriptions in Natural Language:Action class refers to a set of actions with the same main semantic components (e.g.motion of an object). However, sometimes I will also use this to refer to morespeci�c action classes incorporating certain types of objects. The context in whichthe term is used should distinguish whether I am referring to a general or speci�caction class, if it makes a di�erence.Action instance (or just action) refers to a particular action in the world, complete withspeci�c properties and particular entities.Action description refers to the set of linguistic expressions used to describe a particularaction instance. These expressions do not necessarily have to be contiguous in theactual text and they can appear across multiple sentences.Instruction refers to a single sentence with an imperative main clause which describesan action (or actions) for the hearer to perform.1 It need not contain a completeaction description.Instruction step refers to a set of instructions describing a single step of a task. The taskstep could involve multiple actions, and therefore could require multiple instructions.Actions have di�erent types of aspectual (temporal) structure (discussed in Chapter 2)and the type of an action can provide termination information. For instance, culmination(which is termination plus a change of state) can be inherent in some actions, such asremoving and breaking. For these actions, just giving the main component of the action,i.e. the change of state, provides the termination information. However, some actions,such as turning, do not have inherent culmination or termination. These actions, calledactivities, need to have termination information included in their action descriptions inorder to produce e�ective instructions. Termination information can be explicit in theinstructions, as mentioned before, or implicit in the interaction of the activity with otheractions in the instruction step.1This restrictive de�nition is used because (as will be discussed later) the corpus analysis done for thisdissertation work is restricted to such instructions. Non-imperative instructions, such as modal instructions(e.g. \You should do X"), do not appear in the subset of maintenance instructions used to build the languagemodel. 5



In Natural Language, information about an action is realized, or expressed in NaturalLanguage by many di�erent linguistic sources. For example, the main component of theaction is usually expressed through the verb. Action verbs reect the di�erent aspectualtypes of actions. For instance, the verb remove is considered an accomplishment verb,which means that it has inherent culmination (among other things). However, the type(and thus termination) of an action is determined by all of its information. Thus, linguisticexpressions for other parts of the action, such as the arguments to the verb and additionalphrases such as purpose clauses and temporal clauses, can change the type of the action[Moens, 1987]. Interactions among these linguistic expressions a�ect the type of the actionexpressed and should be considered when deciding how to describe an action.The variety of linguistic constructions which express termination information providesseveral choices for expressing the termination of an action, each with di�erent implicationsin di�erent contexts. Characterizing the choices made in naturally-occurring instructions(e.g. through a corpus analysis) determines how to automate the same choices in order toproduce natural and uent instructions. Below I describe the characteristics of the corpusinstructions examined in terms of expressing action termination. These characteristicsdemonstrate the genre of instructions generated by the implementation discussed in thisdissertation.Corpus domainThe corpus analysis examines a corpus of simple step-by-step maintenance instructionswhich includes parts of a \do-it-yourself" book for home maintenance and a collection oftechnical orders (military instructions) for the maintenance of F-16 aircraft. It considersonly the numbered step-by-step parts of the texts rather than the general discussion inthe former and the notes, cautions, and warnings in the latter. In a corpus study done by[Hartley and Paris, 1996], such step-by-step instructions are shown to be a sub-genre ofinstructions. Their analysis shows that step-by-step instructions have linguistic features,such as the dominance of imperative sentences, which distinguish them from other sub-genres (e.g. reference and tutorial texts). Thus, restricting the corpus to step-by-stepinstructions is linguistically-motivated and provides a manageable collection of contexts6



and linguistic features to study.Since the domains covered by the corpus of instructions are complex, the actions de-scribed by the instructions are also complex and varied, including those involving motionover time. Having such actions, as opposed to \change of state" actions, means that someactions do not have inherent culmination and thus need termination information in theirdescriptions. As I show in Chapter 3, termination information is usually explicit in each in-struction2, either because the action has an inherent termination or because an expressiongiving or implying termination is included.ConstructionsAs noted above, termination information has many sources in an action description. Thesesources fall into the following groups:Predicate-argument structure consists of the verb and its required arguments, denot-ing the participants of the action and other essential information. The verb alonecan have an inherent termination, as in(1) Remove the access panel.or the verb combined with its speci�c argument or type of argument can give atermination, as in(2) Cut the wire.(3) Pour one cup of water into the bowl.Additional phrases, e.g. prepositional phrases (paths or locations), adverbial phrases(direction and manner), etc., can also give termination information. For example:(4) Rotate aerial refueling control to full counterclockwise (o�) position.[USAF, 1988]2In the complex portion of the corpus (i.e. the \do-it-yourself" instructions), termination is sometimesleft to be inferred from knowledge the hearer is assumed to have about the domain.7



The action description without the prepositional phrase, i.e. \Rotate the aerial re-fueling control", does not express when to stop the action of rotating the control.Another example:(5) Clamp work securely, and mark positions of screws. [Reader's Digest, 1991]In this example, the adverb securely indicates not only the manner of the clampingbut also when the action of clamping can stop (i.e. when the work is secure).Additional clauses, such as until and when clauses, purpose clauses (including purposiveand clauses), etc., can provide the termination of an action. The following examplesare from the corpus of F-16 maintenance instructions [USAF, 1988]:(6) a. Depress system A reservoir dump valve until accumulator gage [sic]indicates precharge pressure.b. Slide valve aft and remove.c. Depress bleed valve su�ciently to obtain stream of uid ow.Interaction between an action and other actions, i.e. whether a generation or en-ablement relationship exists between two actions, whether one action is done for thepurpose of another, whether the start of the next action implies the termination ofthe previous one, etc., can give the termination of an action. Such non-lexicalizedsources of termination information require inference on the part of the hearer. Forinstance:(7) Hold bit against fence and wheel; roll it clockwise and swing it to 12 degreeline. [Reader's Digest, 1991]In this example, the actions of holding and rolling the bit acquire their terminationsfrom the last action in the sequence, that of swinging it to the 12-degree line. Theyare performed until the last action is completed. No lexical information explicitlyindicates the �rst two actions' terminations.For any action, termination information can be combined from multiple sources as seen inthis example [USAF, 1988]: 8



(8) NOTE: To remove actuator, it will be necessary to lift actuator slightly androtate actuator 90 degrees clockwise until su�cient clearance is obtainedto disengage actuator splines.This example is not in the step-by-step corpus. It is shown as a good example of multiplesources of termination information and could be paraphrased as a step-by-step instructionas (9) To remove actuator, lift actuator slightly and rotate actuator 90 degrees clockwiseuntil su�cient clearance is obtained to disengage actuator splines.showing the complex interaction of action information in order to provide terminationinformation.While the corpus analysis shows that predicate-argument structure commonly conveystermination, the way in which it provides termination information is semantically complex.Similarly, gaining termination information through interactions with other actions is evenmore complex, but it is not as frequent. The other two groups of sources account for asigni�cant portion of the corpus in which termination information is gained explicitly whilebeing semantically simpler. Thus, limiting the implementation of termination expressionsto these two groups does not greatly restrict the coverage of the naturally occurring dataand allows simple characterizations to be used.Using a particular construction in an instruction causes the hearer to make some as-sumptions about the world and the action to be performed. Characterizations of certainconstructions gleaned from the corpus study are discussed in Chapter 3 and encoded asshown in Chapter 5. A related question is that, when termination information for an actionis not explicit in the instructions, is an expectation raised that the termination is assumedto be known, inferable, or otherwise defaulted to by the hearer? The implementation ofdomain knowledge, given in Chapter 4, discusses this point with respect to what the heareris assumed to know about the domain and its actions. In this way, the hearer's ability toinfer termination information from an action description can be reasoned about and canguide the generation process. 9



1.2 Representing Action InformationThe Parameterized Action Representation (PAR), developed at the University of Pennsyl-vania, is meant as an intermediate representation that can support both the animationand Natural Language description of actions [Badler et al, 1997; Badler et al, 1998; Badleret al., 1998]. As such a representation, PAR can represent actions at various levels ofabstraction, from general action classes to speci�c action instances (i.e. sets of action per-formances). A PAR instance for an action consists of the features of the action, includingthe main semantic components of the action which identify its general action class. Otherfeatures include speci�c information about the action which distinguishes it from others inits action class. For the purposes of providing information relevant to the termination of anaction as described above, the PAR needs to represent the following pieces of information:� core semantics | the state-change, motion, and/or forces of the action� direction/path | the direction or path of motion or force� purpose | the purpose for which the action is done: to achieve a particular state,to generate another action, and/or to enable the next action� termination | explicit termination conditions (events or states of the world) un-related to other aspects of the action� duration | explicit timing of the action (e.g. for 6 seconds) or iteration (e.g.between 5 and 6 times)Each of these can be realized in an action description. For instance, the core semantics isusually realized as the verb, the path as a prepositional phrase, etc.For actions that are part of an instruction step or that contain sub-steps of their own,the PAR also needs to include information about the other actions in the instruction step.For example, if an action has sub-steps, these should be given in the PAR instance for theaction. Likewise, a sub-step action instance should have pointers to the action instancewhich it is a sub-step of as well as the other sub-steps.3 Therefore, the following pieces of3Although only speci�c action instances are considered for the implementation, these pieces of informa-tion could also be used when specifying the properties of action classes or generic actions.10



information, each of which can also have a linguistic counterpart, are included in the PAR:� subactions | elaboration of how to accomplish the action� previous action | link to a previous action� concurrent action | link to a concurrent action� next action | link to a following action� parent action | link back to the parent action of which the action is a sub-stepThe structure of the PAR is discussed in detail in Chapter 4. Rules for reasoning aboutaction information, e.g. determining whether termination information is implied, are alsopresented. In addition, rules de�ning what particular agents know about actions in thedomain are discussed. These rules for reasoning about actions and agents both contributeto generation of e�ective instructions.1.3 Generating E�ective InstructionsA Natural Language generator called SPUD (Sentence Planning Using Descriptions) [Stoneand Doran, 1997; Stone and Webber, 1998; Stone, 1998], developed at the Universityof Pennsylvania, provides the necessary components for generating e�ective instructions.SPUD forms descriptions of actions (as well as events, states, and objects) by choosinglexical items from its Lexicalized Tree-Adjoining Grammar (i.e. words and their associatedlinguistic constructions) which serve the given communicative goals best. Lexical itemsare annotated with semantic and pragmatic information that SPUD can match againstthe information that it is trying to convey. Using this framework to implement multi-clausal sentences and multi-sentence discourse, instructions are generated from the actionrepresentation and the semantic and pragmatic contexts determined empirically in thecorpus analysis.Encoding constructions for SPUD consists of creating lexical items which specify theirsyntax as well as the semantic and pragmatic contexts in which they are used (describedin Chapter 3). Additional communicative goals are given to SPUD as part of a generation11



task in order to ensure that the necessary action information is conveyed. To determine if aparticular action description is e�ective, SPUD uses rules that it can use to check whetherthe description provides termination information and other necessary action information;these are presented in Chapter 4. Given all of this information, SPUD can be told togenerate a description of a particular action in the form of an instruction for a particularagent. SPUD uses the semantic and pragmatic context to determine the best descriptionof the action, making sure that it satis�es the communicative goals (which in turn ensurethat it is e�ective for the performance of the action). SPUD, the encoded constructions,and the generation of example instructions are described in more detail in Chapter 5.1.4 Contributions and Overview of WorkIn this dissertation, I claim that the generation of e�ective instructions can be accom-plished through determining and encoding how action information is expressed naturally,representing the necessary action information and formalizing rules for reasoning about it,modeling agent knowledge, and providing all of this information to a Natural Languagegenerator capable of considering and reasoning about the information in an action descrip-tion and its e�ect on an agent's knowledge and ability to perform the action. In order tosupport this claim, I have three interrelated goals in my dissertation work: characterizingparticular constructions used for expressing action termination, representing actions anddomain knowledge, and generating instructions from action instances and agent knowledge.The contributions of this dissertation in these areas include:� analysis of action types and termination information in naturally occurring instruc-tional texts;� use of an action representation developed for and capable of representing necessaryaction information for performing actions;� implementation of rules for reasoning about the e�ectiveness of action descriptions,with respect to agent knowledge in the areas of concreteness and termination infor-mation (i.e. action performability); 12



� implementation of agent expertise levels using modal operators for use in the gener-ation of tailored instructions;� demonstration of the generation of di�erent instructions from the same action infor-mation based on the assumed knowledge of the agents.In Chapter 3, constructions used for expressing termination, along with the seman-tic and pragmatic contexts in which they appear, are analyzed and characterized basedon actual language use. I have coded a corpus of instructions for the types of actionsthat occur, the constructions which appear in the action descriptions, and the sources oftermination information. From the coding, I have analyzed the instructions and drawnconclusions about the use of certain constructions for expressing termination information.The characterization of the constructions are later expressed in the domain knowledge andlinguistic representation for the Natural Language generator.In Chapter 4, I detail the implementation of domain knowledge, which includes repre-senting action information as well as agent knowledge. The action representation supportsthe necessary information about actions, including termination information, and includesthe relationships between actions, such as sub-steps and purposes, which can be sourcesof termination information. I argue that the representation should be as language-neutralas possible; that is, it should not be structured in a certain way just for linguistic reasons.The action representation must be suitable for generating Natural Language from and yetnot be tied to any particular language or linguistic theory. The same holds true for the restof the domain knowledge, including knowledge about objects and agents. In addition, Iformalize the reasoning about the performability of actions and the experience that agentshave.In Chapter 5, I bring the previous two chapters' work together in the generation ofexample instructions in the domain. The constructions for expressing action informationare encoded for SPUD so that it can create action descriptions based on the same seman-tic and pragmatic contexts determined in the corpus analysis. The encoded constructionsgive SPUD the option of spreading an action description over multiple clauses and sen-tences, since information about an action (especially termination information) can appearin multiple clauses and sentences. Stylistic preferences for di�erent agent types are used to13



guide SPUD in such choices. Using knowledge about the domain and the agent and rea-soning about the information provided by constructions, SPUD determines the best wayto express action information for a particular agent and the given communicative goals.In Chapter 6, I discuss related generation systems and compare them with the imple-mentation presented in this dissertation. In Chapter 7, I conclude this dissertation witha summary of what has been accomplished and what is left as further work. In the nextchapter, I discuss background material in the areas of action ontology, domain knowledgerepresentation, lexical choice and linguistic constructions for termination information, andNatural Language Generation.
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Chapter 2
Background
The following sections present background material for topics mentioned in this disserta-tion. The �rst, and most central, is that of the classi�cation of action types, presentedin the �rst section. Next, the representation of actions is discussed. Then modal �rst-order logic is presented, as it is used to represent domain knowledge (objects, actions, andagents). After this, the remaining sections of the chapter address various aspects of Natu-ral Language Generation (NLG) research: lexical choice, or how words are chosen; work onthe expression of purpose in actions; LTAG, a grammar formalism; and �nally, the majorissues for NLG systems. This material is meant to introduce some terms and conceptsreferred to and relied upon later. Comparisons between the implementation discussed inthis dissertation and other NLG systems are presented in Chapter 6.2.1 Action OntologyAs far back as Aristotle, philosophers and linguists have pondered the types of situations(events, actions, and states) evoked in language. Vendler [Vendler, 1967] proposed a typol-ogy of situations, distinguishing between accomplishments, achievements, activities, andstates, each of which has its own temporal structure and properties. An activity, such aspushing a cart, has \no set terminal point," while an accomplishment, such as drawing acircle, has \a `climax', which has to be reached if the action is to be what it is claimedto be" [Vendler, 1967, p.100]. Achievements, such as reaching the top, \occur at a single15



SITUATIONS

STATES OCCURRENCES

PROCESSES EVENTS
Sam saw Mary

Sam is happy

Sam cleaned his roomFigure 2.1: Mourelatos' typology of situationsEVENTSatomic extended+conseq Harry broke the window Sue built a sandcastle(telic) (achievement) (accomplishment)-conseq Sandra hiccupped Max worked in the garden(atelic) (point) (activity)Figure 2.2: Moens and Steedman's classi�cation of events along two dimensions
moment", whereas states, such as loving, \last for a period of time" [Vendler, 1967, p. 103].Mourelatos [Mourelatos, 1981] proposed a similar typology, but he collapsed accomplish-ments and achievements together as events (see Figure 2.1, adapted from [Passonneau,1987, Figure 1]). Moens and Steedman [Moens and Steedman, 1987] follow in the samevein, classifying situations into states and events. However, they make a �ner and moresystematic distinction between the kinds of events (and, therefore, actions). Events/actionsare characterized along two dimensions | the extension of an event or action in time (or,alternatively, its ability to be decomposed into sub-events or sub-actions) and the existenceof characteristic consequences associated with the event or action (see Figure 2.2, adaptedfrom [Moens and Steedman, 1987, Figure 1]).While all four types of events/actions shown in Figure 2.2 exist, actions which appearin maintenance instructions tend to be either achievements or accomplishments. Both16



culmination

consequentpreparatory
process stateFigure 2.3: Moens and Steedman's tripartite structure of events/actions

of these types have consequences, or e�ects on the world, which is the general point inmaintenance tasks. Another feature they have in common, related to the fact that theyhave consequences, is that they have de�ned endpoints. That is, achievements and ac-complishments, as part of their meaning, include when to stop doing the actions. Thisinherent termination can be seen in the tripartite representation of actions that [Moensand Steedman, 1987] propose (Figure 2.3). In this representation, actions can have apreparatory process, a culmination point, and a consequent state. The culmination point,right before the consequent state begins, is the termination of both achievements andaccomplishments. The di�erence between the two types is that an achievement does nothave a characteristic preparatory process leading up to the culmination. Despite this, theyare interchangeable by stripping away or adding the preparatory process, depending onthe importance placed on the preparatory process.An important part of understanding instructions is understanding how the di�erentactions in an instruction step are related temporally (as well as causally). While instruc-tions are usually given in the order in which they are to be done, it is still sometimesnecessary to express more complex temporal relationships, such as overlap or concurrency.Allen [Allen, 1983; Allen, 1984] has identi�ed a set of thirteen temporal relations betweenthe intervals (spans of time) over which situations hold or take place, shown in Figure2.4 (adapted from [How, 1993, Figure 2.5]). Three of these (meets, starts, and �nishes)�gure prominently in the representation of actions and their associated time intervals inthis dissertation.
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2.2 Action RepresentationFirst-order logic, description logics, and feature structures have been used in representingactions for various purposes. Steedman [Steedman, 1997] has proposed encoding the se-mantics of events/actions in a dynamic semantics formalism, an extension of modal logicwhere the occurrences of actions de�nes accessibility relations between possible worlds.Dynamic semantics, as well as predecessors such as situation calculus and event calculus,is meant as a representation for reasoning about actions, their temporal structure, andtheir consequences. The generation system COMET [McKeown et al., 1990] uses Func-tional Uni�cation Formalism, an extension of functional uni�cation grammar (related tofeature structures), to represent logical-form semantics of actions. COMET uses this rep-resentation for lexical choice since the representations of actions and the representationsof linguistic constructions can be uni�ed (i.e. their attributes compared and combinedin certain ways) to form descriptions of actions. Description logic representations, i.e.combinations of feature structures and logic machinery, include CLASSIC (used by [DiEugenio, 1993], discussed briey in Section 2.5) and LOOM (used by [R�osner and Stede,1994], among others, as discussed in Chapter 6). Description logic representations havebeen used to reason about the properties of actions and how they can be classi�ed in anaction classi�cation hierarchy. Description logics have even been used to represent lin-guistic knowledge, classifying the semantics of linguistic constructions. Overall, featurestructures are the simplest and most common way of representing actions. Feature struc-tures contain attribute-value pairs (e.g. [agent = you]) where the value is a simple tokenor another feature structure. [Dale, 1992] is one good example of using feature structuresto represent action information, although the main focus is on object information (seeChapter 6). PAR, the action representation used in this dissertation, can be implementedas a feature structure representation and is discussed as such in Section 4.3.1. Featurestructures form the basis of most action representations because of their simple attribute-value structure. While they su�ce for representing information about actions, additionalmachinery is needed to reason about the actions represented. In the next section, modal�rst-order logic is discussed; it is the knowledge representation used in the implementationdescribed in this dissertation. 19



2.3 Modal First-Order LogicFirst-order logic (FOL) consists of atoms, predicates, quanti�ers, and variables combinedinto formulas using logical operations of conjunction (and), disjunction (or), negation, andimplication. Formulas in FOL can express facts and rules about a domain. For example,the following are FOL formulas: bird(tweety)8x (bird(x)! ies(x))The �rst formula states the fact that the predicate bird holds for the atom tweety, aparticular object in the domain. The second states the rule that for all objects (usingthe universal quanti�er 8 and the variable x) for which bird holds, the predicate iesalso holds. In English, these mean that \Tweety" is a bird and that all birds y, re-spectively. Using logical theorems which determine how to manipulate logical statements,these formulas can be used to prove the formula ies(tweety), representing the reason-ing that since \Tweety" is a bird, \Tweety" can y. A straightforward correlation canbe made between the representational power of feature structures and that of �rst-orderlogic. First-order logic can represent anything represented in a feature structure. By us-ing FOL predicates corresponding to feature structure attributes and assigning identi�ersto entities (objects, actions, etc.), the same information found in feature structures canbe represented in FOL. For instance, the object feature structure for \Tweety" could be[ id = tweety; type = bird] and translated as the �rst FOL formula presented above.Thus, FOL is suitable for representing and reasoning about many domains, particularlythose involving objects and their properties.While FOL is powerful and can be used to represent and reason about actions, it is notfully capable of representing and reasoning about the knowledge that agents might havein a domain. In order to do so, a representation needs the ability to state that certainpieces of knowledge are assumed to be known by certain agents. This cannot be donewith standard FOL, as all statements of knowledge have the same status (e.g. knownby everyone). One solution is to combine �rst-order logic and modal logic. Modal logicsdenote the informational status of pieces of knowledge by predicating them with modal20



operators.1 For instance, a modal operator, say U, could be used to represent an agent'sassumed knowledge, and another, say S, could be used to represent the system's knowledge.Using these modal operators, what the agent is assumed to know can be reasoned aboutseparately from what the system knows. The relationship between these two operatorscould be de�ned so that, in addition to other knowledge, the system knows everything theagent is assumed to know; treating operators as sets of knowledge, this relationship wouldbe represented in set terms by S � U. For example, if the system knows that \Tweety" isa bird and both the system and the agent know the rule about all birds ying, the FOLformulas from before would be stated in modal FOL asS bird(tweety)U 8x(bird(x)! ies(x))Using these formulas, the formula S ies(tweety) (i.e. the system knows that \Tweety"can y) can be proven but U ies(tweety) cannot. The fact that \Tweety" is a birdis not predicated with the U modal operator and thus the agent does not know that\Tweety" is a bird and cannot infer that \Tweety" can y. In this way, agent knowledgecan be represented and reasoned about, distinct from other knowledge predicated aboutthe domain.2.4 Lexical Choice\The problem of determining what words to use for the concepts in the domain rep-resentation is termed lexical choice. In an e�ort to make domain representationsindependent of language, there may be a variety of di�erent words that can be used toexpress any concept in the domain, and a language generator must choose which oneis most appropriate in the current context." [Elhadad et al., 1997, p.195]The choice of words and linguistic constructions (i.e. syntax) anchors the generation ofinstructions. Words and constructions need to be chosen based upon their meaning and1In the case of dynamic semantics, an action representation mentioned in the previous section, modaloperators are used to represent the e�ects of actions, in the sense of representing the state of the worldafter an action occurs. 21



implications in expressing information. Lexical choice implementations rely on analyses ofwords and constructions in natural texts. The choice of a particular word or constructionto express a piece of information depends on many contextual factors. Contextual factorsinclude previous syntactic and lexical choices, since they can a�ect the choices that can bemade subsequently. The structure of the domain, e.g. its objects and relations, also a�ectslexical choice as it may force or preclude particular choices. What is commonly thoughtof as \the context," that is, information about the speaker, the hearer, and the previousdiscourse, also contributes additional contextual factors. All of these contextual factorsconstrain the choice of lexical items and their syntactic constructions, as described clearlyby [Elhadad et al., 1997].The development of a lexical choice algorithm begins with determining correlationsbetween contextual factors and linguistic features of words and constructions, usuallythrough a corpus analysis as demonstrated by [Hartley and Paris, 1996], among others.Once the contextual factors and the ways in which they constrain the range of linguisticfeatures have been determined, several methods can be used to perform lexical choice.Since generation systems depend on lexical choice to determine the most appropriate way toexpress information, lexical choice algorithms represent one of the key aspects of generationsystems. Lexical choice methods di�er in a number of ways, including the constraintswhich they consider, how those constraints are represented, the location of lexical choicein the system architecture, and what the lexical choice algorithm receives as input. Theconstraints used by a system determine its ability to choose between similar words andconstructions. If the constraints are general, then the lexical choice algorithm will be able tomake only coarse-grained decisions. In addition, the representation of the constraints, e.g.as rules or heuristics, a�ects the location of lexical choice. If constraints are purely semantic(i.e. determined only by content), then lexical choice can be done with content planning(i.e. at location 1 in Figure 2.5). The advantage of this is that the lexical choice algorithmhas access to the domain representation, however this may mean that concepts and wordshave a one-to-one correspondence, i.e. the same words are always chosen for the sameconcepts, reducing the expressive exibility of the system. Another disadvantage is thefact that if it is discovered in surface realization (i.e. the choice of syntactic constructions)22
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Adapted from Figure 1 of [Elhadad et al, 1997]1. Particular words to use are chosen during content planning.2. Words are chosen after the complete content is speci�ed.3. Words are chosen simultaneously with choosing syntax.Figure 2.5: Possible locations for lexical choice in a NLG system
that the chosen words cannot be used due to syntactic constraints, lexical choice mustbe redone. At the other extreme in the system architecture shown in Figure 2.5, wherelexical choice is done with surface realization, constraints on lexical choice can rely onsemantics as well as syntax. This avoids the problem of having to redo lexical choicebecause of syntactic constraints; however, depending on the particular architecture, lexicalchoice algorithms might be deprived of consulting the domain representation as part ofthe decision-making process. What input is provided to the lexical choice algorithm, i.e.the information on which it bases its decisions, determines the quality of the decisionsmade. Not enough information or the wrong kind of information can result in poor lexicalchoice. All of these factors determine how well a lexical choice algorithm is able to chooseappropriate words or linguistic constructions.
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2.5 Expressions of purposeWhile the number of di�erent linguistic constructions is considerable, those involving ex-pressions of purpose have been the focus of much research, especially in terms of their usein instructions. Since the performance of an action can change depending on the purposefor which it is done, conveying an action's purpose is important in instructions. Purposecan modify many aspects of the performance of an action, including its termination andmanner. The decision to include purpose constructions in this dissertation stems from theiruse to convey termination information for actions2 and from the fact that understandinghow to express purpose is necessary in general in order to produce natural and e�ectiveinstructions. Thus, I briey review some relevant research which explores how expressionsof purpose are related to the semantics of actions.[Thompson, 1985] presents a corpus study in which she analyzes initial (fronted) and�nal (non-fronted) purpose clauses. She discovers that, rather than being a choicebetween putting a \purpose clause" before or after the main clause, initial and �nalpurpose clauses act as very di�erent constructions. In a corpus of narratives, pro-cedural texts, and a Master of Arts thesis, she found that only 18% of the purposeclauses were initial purpose clauses and the rest were �nal purpose clauses. However,in the two procedural texts, the percentage of initial and �nal purpose clauses weresigni�cantly di�erent: a 50%/50% split in one text and approximately a 25%/75%split in the other. The di�erent roles that initial and �nal purpose clauses play causethis distinction between procedural texts and non-procedural texts. [Thompson,1985] characterizes initial and �nal purpose clauses this way:An initial purpose clause states a problem within the context of expectationsand the following clauses (often many) provide the solution to the problem. Inother words, initial purpose clauses guide the reader, providing a framework forinterpreting the main clause which is typically \weighty".2As the next chapter shows, nearly a third of the purpose constructions in the corpus provide terminationinformation.
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A �nal purpose clause states the purpose for doing the action in the main clause.Serving such a local role, the scope of the �nal purpose clause is restricted to theimmediately preceding main clause (which gives an action by volitional agent).Based on the non-use of commas (as opposed to initial purpose clauses), �nalpurpose clauses are more tightly linked to the action in the main clause.This distinction between initial and �nal purpose clauses accounts for the fact thatprocedural texts use more initial purpose clauses than other types of texts sincethey are organized in terms of problems and solutions and thus favor initial purposeclauses.[Di Eugenio, 1993; Di Eugenio and Webber, 1996] look at purpose clauses with re-spect to inferences that must be made to interpret instructions. They consider howactions are related as well as the assumptions made to accommodate such relations.While they deal with interpretation rather than generation, their analysis and con-clusions are valuable and can be applied to generation.[Kosseim and Lapalme, 1995] develop heuristics for determining how to express e�ectsand guidances. E�ects are essentially generation relationships between actions andother actions or events. Guidances are conditional generation relationships betweenactions, i.e. the action to be generated will only occur if certain conditions hold.This work explores how to realize these \semantic carriers" (rhetorical relations) aspurpose clauses, means (\by") clauses, or statements of result.[Vander Linden and Martin, 1995] perform a corpus analysis to determine correla-tions between contextual factors (e.g., semantics, discourse, and the hearer model)and the ways in which purpose is expressed in instructions. The decisions that aremade about the purpose expression include: its slot (position with respect to mainaction), its form (grammatical category), its linker or cue words (�xed lexical itemsin constructions), and how clauses are combined.[Hartley and Paris, 1996] encode correlations of task elements and linguistic featuresin a strata of networks for realization (e.g. lexical and syntactic) choices. The task25



elements include goals, functions, constraints, etc., in the domain of software instruc-tion manuals. The realization choices are based on systemic functional linguistics(SFL) and they use a SFL-based tactical generator.While the methods for choosing between forms of purpose expressions di�er, one factorremains fairly constant across discussions of choosing purpose expressions: the use ofcorpus analyses. A corpus analysis, the study of naturally occurring texts, is the basisfor the decisions which are encoded in lexical choice algorithms. To some extent, I haveincorporated the previous work done on purpose constructions into the implementation inthis dissertation, in terms of the types of purpose relationships between actions as well asthe overall method for arriving at characterizations of particular constructions and how tochoose between them. This is discussed is more detail in the next chapter, which presentsthe corpus analysis done for this dissertation.2.6 Lexicalized Tree-Adjoining GrammarEvery NLG system needs some way to represent the grammar, or language model, for thetexts it produces. In this implementation, the Natural Language generator, SPUD, uses aLexicalized Tree-Adjoining Grammar (LTAG) [Schabes, 1990]. Tree-Adjoining Grammar(TAG) is a syntactic formalism in which trees de�ne individual pieces of syntax and oper-ations to combine trees denote how syntactic components can interact [Joshi et al., 1975].LTAG is a variant of TAG in which each syntactic tree is anchored by (i.e. associatedwith) at least one lexical item (word). For example, consider the trees shown in Figures2.6 and 2.7, presented in SPUD's non-traditional fashion.3 The �rst shows a tree with aninectional item anchoring a sentence (S) which consists of a subject (NP) and a predicate(IP).4 Unlike most other trees, lexical items which anchor this tree, i.e. tenses such as3This graphical tree format is used for readability purposes. The actual input format to SPUD is shownin Appendix A.2. Although not shown in the graphical format, syntactic features as well as pragmaticinformation are associated with each tree. Technically, the addition of features makes this Feature-BasedLTAG. The addition of semantic indices (e.g. (S,R,E,A)) and pragmatic information makes this use ofLTAG non-standard.4Treating inection as anchors for sentence trees di�ers from most LTAG uses which usually use verbsas anchors for sentence trees. The decision to treat inection this way does not have a bearing on therest of the work in this dissertation and could have been done di�erently without signi�cant change to theresults. 26



S(S,R,E,A)����� HHHHHNP(A)# IP(S,R,E)���� HHHHu:In(S,R,E)� VP(S,R,E)#Figure 2.6: Tree for a simple sentence, simpleS(S,R,E,A)VP(S,R,E)��� HHHV(E)� u:NP(O)#Figure 2.7: Tree for transitive verbs, transitiveVP(S,R,E,A,O)
present or past, are realized by a�ecting features of other parts of the tree (in this case, theinectional form of the verb). The second tree (Figure 2.7) shows a transitive verb phrasewhich consists of a verb and its object. Each node is labeled with its syntactic category(e.g. V for the verb and NP for the object). In SPUD's use of LTAG, the semantic entitiesbeing described by the node are also indicated, e.g. NP(A) is a noun phrase describing theentity A.5 The leaves with downward arrows (#) indicate substitution sites, where trees ofthe right category can be inserted into the tree. The diamond (�) indicates the position ofthe lexical item which anchors the tree.The types of tree shown in Figures 2.6 and 2.7 are called initial or alpha trees; theyprovide syntax for the category indicated by the top node. Initial trees �ll substitutionsites. The other type of trees, called auxiliary or beta trees, are spliced into initial treesthrough the TAG operation of adjunction. For instance, the tree shown in Figure 2.8 is anauxiliary tree which adds a prepositional phrase to a verb phrase. The foot node, indicated5The u: that is appended before the leaf node categories indicates that the information in these nodescan be given (or already known) as opposed to new. This is also unique to SPUD's use of LTAG.27



VP(S,R,E)���� HHHHVP(S,R,E)� PP(P)��� HHHP(P)� u:NP(O)#Figure 2.8: Auxiliary tree bVPpp(S,R,E,P,O)NP(george)George� N(book)book� N(oor)oor� NP(O)�� HHthe� N(O)#Figure 2.9: Example lexical items
by the asterisk (�), must be the same category as the top node and gives the location forthe adjunction operation. In this case, adjunction applies to a node for a verb phrase,creating a subtree which consists of the verb phrase and the prepositional phrase. Thesame method is used to adjoin subordinate clauses to a main clause, as will be shown inChapter 5.As an example of how the tree operations work, consider the sentence \George movedthe book to the oor." Lexical items needed for this example are shown in Figure 2.9, inaddition to the lexical items past anchoring a simpleS tree (Figure 2.6), move anchoring atransitiveVP tree (Figure 2.7), and to anchoring a bVPpp tree (Figure 2.8). The tree startswith a single substitution site for the type of tree desired; in this case, the initial tree isS(s,t,w1,george)# indicating a sentence tree with its semantic indices (to be explained inChapter 5). The sentence tree anchored by past is substituted, giving the �rst tree shownin Figure 2.10. Next, the tree for the verb phrase anchored by move is substituted. Atthis point, the auxiliary tree anchored by to can be adjoined onto the tree. Notice thatthis adds an additional verb phrase (VP) node to the tree. These two operations resultin the second tree in Figure 2.10. Finally, the noun phrases can be substituted in and28



S(s,t,w1,george)������ HHHHHHNP(george)# IP(s,t,w1)���� HHHHu:In(s,t,w1)past VP(s,t,w1)#+S(s,t,w1,george)������ HHHHHHNP(george)# IP(s,t,w1)���� HHHHu:In(s,t,w1)past VP(s,t,w1)��� HHHV(w1)move NP(book)#+S(s,t,w1,george)������� HHHHHHHNP(george)# IP(s,t,w1)������� HHHHHHHu:In(s,t,w1)past VP(s,t,w1)����� HHHHHVP(s,t,w1)��� HHHV(w1)move NP(book)# PP(to)��� HHHP(to)to NP(oor)#+Figure 2.10: Construction of example sentence29



+S(s,t,w1,george)������� HHHHHHHNP(george)George IP(s,t,w1)������� HHHHHHHu:In(s,t,w1)past VP(s,t,w1)������ HHHHHHVP(s,t,w1)��� HHHV(w1)move NP(book)�� HHthe N(book)# PP(to)��� HHHP(to)to NP(oor)�� HHthe N(oor)#+S(s,t,w1,george)������� HHHHHHHNP(george)George IP(s,t,w1)������� HHHHHHHu:In(s,t,w1)past VP(s,t,w1)������ HHHHHHVP(s,t,w1)��� HHHV(w1)move NP(book)�� HHthe N(book)book
PP(to)��� HHHP(to)to NP(oor)�� HHthe N(oor)oorFigure 2.11: Construction of example sentence (continued)
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completed (see Figure 2.11). Morphological processing is needed to inect the verb moveto reect the past tense feature dictated by the past lexical item (which should be erased).While this is a simple example, it shows how LTAG is used to represent lexical items andto combine them to form larger syntactic structures.2.7 Natural Language Generation\Text generation can be characterized as a process of transforming a message into atext. This process is successful if, and only if, the reader of the text is able to deriveits intended message. The ultimate criterion of what it means for a text to be good isthus a cognitive rather than a strictly linguistic one: the easier it is for the reader todecode the intended message from the text, the better the text will be."[Scott and de Souza, 1990, p.47]This section is meant as an overview of the structure of NLG systems, providing theframework for discussing how the implementation described in this dissertation compareswith other NLG systems presented in Chapter 6. In addition, this overview brings togetherthe issues discussed in this chapter and the previous one, by showing how the various topics�t into the generation process.A generation system should take (or determine) communicative goals, goals to beachieved through the communication of information, and produce text which satisfy them.Generation systems must be given (or plan) the content to be conveyed and perform lexi-cal choice and surface realization (refer back to Figure 2.5 for an overview of NLG systemarchitecture). In order to carry out the transformation of goals into text, systems needa representation of the domain (e.g. concepts, objects, relations, etc.), a lexicon supply-ing words and their meanings, and a grammar providing ways of combining words intosentences (and possibly sentences into a discourse). Every system varies in their meth-ods of content and text planning, lexical choice, and surface realization, and each usesdi�erent domain representations as well as lexicons and grammars. In this dissertation, Iassume that by the time a system is generating a single instruction step, no further con-tent or text structure planning is needed beyond choosing to use multi-clausal sentences31



or multiple sentences. So, leaving aside content and text structure planning, I focus mydiscussion of generation systems on their domain and lexical representations, their lexicalchoice methods and other aspects of their generation algorithms, and the quality of thetexts produced.Domain and lexical representations encode information about the domain, the lexi-con, and the connections between the two. Similar to the representation of actions (Section2.2), domain representation can be done in several formalisms, such as �rst-order logic,description logics, and feature structures. A key issue in domain representation is whetherit is independent of linguistic considerations. A domain representation is language-neutralif it does not contain elements or structures that are required by any particular NaturalLanguage. A related issue is the mapping of concepts in the domain to words in the lexicon.A one-to-one mapping between domain concepts and lexical items reduces the exibilityof generation since a concept will always be described in the same way. If the connectionbetween concepts and words is many-to-many, there can be many di�erent ways of relatingthe same concept in di�erent contexts, precipitating the need for lexical choice. A criticalissue in lexical representation is the inclusion of context in the representation of lexicalitems. That is, whether not only the meaning of a word or construction is represented,but also the context in which it has that meaning. This issue is important in terms of howlexical choice is done.Lexical choice and realization algorithms are the tactical (\how to say it" as op-posed to \what to say") components of a generation system | they perform linguisticrealization, the transformation of semantics (meaning) into words and constructions. Thevariations in lexical choice algorithms were discussed in Section 2.4. While the lexicalchoice algorithm is a de�ning di�erence between generation systems, several other relateddi�erences exist. For instance, if a generation system uses a lexicalized grammar, one inwhich every piece of the grammar is associated with at least one word, then lexical choiceperforms the surface realization as well. Without a lexicalized grammar, a separate surfacerealization phase is needed to combine the chosen words into legal syntactic structures.The choice of a lexicalized or non-lexicalized grammar a�ects the lexical choice algorithm,32



dictating whether lexical choice will choose words alone or words along with the construc-tions which they anchor. One �nal issue is whether backtracking, undoing a previouschoice or decision, is used when legal sentences cannot be generated at �rst. Backtrackingcan occur within the lexical choice algorithm itself, usually when a lexicalized grammaris used, or during the surface realization phase, at which point the lexical choice phasemust be redone. Finding a mapping from the semantics to a surface realization representsa search problem and di�erences in search algorithms are therefore applicable to lexicalchoice and generation algorithms.Assuring the sensitivity, e�ciency, and e�ectiveness of generated texts is essen-tial for a successful generation system. Texts need to be sensitive to what the hearerknows. Di�erent texts conveying the same information should be generated for hearerswith di�erent knowledge, tasks, etc. This could include making sure to use only wordswhich the hearer knows (see [McKeown et al., 1993]) or actions which the hearer is ableto perform. Texts also need to be e�cient by avoiding redundancy. In order to producee�cient texts, the generation system needs to be able to check which of the goals havebeen already achieved by the text at various points in the generation process. Amongother bene�ts, this allows constructions to contribute to more than one goal (see [Stoneand Webber, 1998]). Finally, texts need to be e�ective. They need to identify referents(objects, states/conditions, events, and actions) unambiguously and su�ciently to servethe communicative goals (in the case of instructions, enabling the correct performance ofan action).As will be discussed in Chapter 6, the issues raised here with respect to the generationprocess are addressed to varying degrees by previous NLG systems. None, however, fullyaddress all of the issues, particularly those of expressing termination information andgenerating e�ective instructions. In the next chapter, the �rst step in generating e�ectiveinstructions is discussed: namely, the study of naturally occurring instructions to determinehow they convey termination information.
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Chapter 3
Expressing Action Termination
Carrying out instructions relies on having all of the information about the actions ininstructions, especially when to stop performing each action. Action termination informa-tion, therefore, needs to be available in some form in instructions. To see how instructionsexpress termination information, I gathered examples of complex actions from severalsources, including an F-16 aircraft maintenance manual and a Reader's Digest \do-it-yourself" home maintenance manual. I expected to �nd that a signi�cant number of theactions described in the instructions would have explicit expressions of action termination,since the intent of instructions is to have the reader carry them out. What I found con-�rmed this and, by examining how termination expressions are used in these instructions,I gained insight into how action termination is expressed for a variety of action and verbtypes.While the most frequent source of termination information in the corpus of examples isthe inherent culmination found in accomplishment and achievement verbs (see Section 2.1),a third of the instructions (around one thousand) have termination information comingfrom sources other than the verb. This means that enough interesting termination expres-sions are available to draw conclusions from with respect to common ways of expressingtermination outside the verb. Coding each corpus instruction for action type and sourceof termination shows how frequently termination expressions appear and with which ac-tion types they tend to occur. The corpus analysis focuses on certain expressions in moredepth, characterizing them in terms of how they provide termination information and34



what distinguishes them from other expressions. This sort of characterization is neededfor automating the generation of such expressions correctly, among other tasks.In the next section, I describe the corpora used for the corpus analysis and in Section3.2 I show how the corpus is coded. (Appendix B contains a selection of the coded corpus.)Section 3.3 provides results and analysis of the coded corpus, including detailed analysisof selected termination expressions. The chapter ends with concluding remarks about howtermination is expressed and how the information gained from the analysis is used in therest of this dissertation.3.1 About the CorporaThe corpora include the Reader's Digest New Complete Do-It-Yourself Manual [Reader'sDigest, 1991], a version of the Organizational Maintenance Job Guide (Fuel System Dis-tribution, USAF Series F-16C/D Aircraft) [USAF, 1988], which is a set of technical ordersfor the maintenance of F-16s, and a set of instructions for a virtual mitre saw assemblyline [ITL SIMA, 1997]. This last corpus contains only numbered instructions, with noparagraph-length sections, and is meant as actions to be carried out by (virtual) workerson an assembly line. In addition, only the numbered instructions in the other two corporaare considered. Such step-by-step instructions are recognized as a sub-genre of instructionsmanuals by virtue of their distinguishing linguistic characteristics [Hartley and Paris, 1996].Thus, focusing on the step-by-step portions of the corpora is well-motivated.Since the corpora are meant to be used as guides to performing maintenance tasks aswell as repairs and initial installations, they contain examples of concrete actions and thesubset of step-by-step instructions provides imperative, not descriptive, sentences aboutthe actions. The complexity of the sentences is restricted since each instruction step, i.e.set of sentences about a subtask, describes only one or two actions at a time. However,the variety of linguistic constructions (ways of expressing information) is large enough forthe purpose of the corpus study.The step-by-step subset of the corpora contains 3282 imperative main clause verbphrases (not necessarily sentences since conjoined main clauses are treated as two separate35



main clauses). Many of the instructions also contain subordinate clauses, which meansthat all of the verb phrases in the corpus outnumber just the main clause verb phrases. Asdescribed in the next section, each verb phrase, whether main or subordinate, is coded toindicate its type, its source of termination information, and its relationship to other verbphrases.3.2 MethodologyThe purpose of the corpus analysis is to identify sources (e.g. particular linguistic con-structions) of termination information in maintenance instructions. The corpus analysis isnot meant to discover exactly how termination sources, both linguistic and non-linguistic,provide termination information or how multiple termination sources interact. The codingof the corpus is kept simple, especially since it is done entirely by hand.The simplest source of termination information is the verb itself (see Section 2.1). Verbssuch as remove and open represent actions that have inherent culmination. Since simpleris better in Gricean terms [Grice, 1975], it is not unreasonable to expect that verbs willcarry most of the burden of conveying termination information. However, when verbs forthose actions which do not have inherent termination, such as turn and slide, are used,termination information must come from outside the verb. In these cases, terminationinformation can from arguments of the verb (required or not) and from additional phrasesand clauses. Having one verb phrase is simpler than having multiple verb phrases, sotermination sources involving just one verb phrase are expected to be preferred, whenpossible, over multiple verb phrases. In general, information (whether about actions ornot) is expected to be presented in the simplest and clearest way possible.With these observations and expectations as a guide, the corpus is coded as follows.Each imperative verb phrase, whether main or subordinate, is given one of the followingmain codes:IC (Inherent Culmination) | The verb has inherent culmination. Culmination is de�nedby the termination of an action or event accompanied by a characteristic change ofstate (see Section 2.1). Therefore, verbs with inherent culmination (such as remove36



and open) have termination information. The following examples illustrate IC verbphrases:1(10) a. Check fuse or circuit breaker box; reset tripped breaker or replaceblown fuse. [Reader's Digest, 1991] IC,IC,ICb. Remove safety wire and disconnect two hydraulic tubes from FFPhydraulic motor. [USAF, 1988] IC,ICc. Get a trunnion and set it in the �xture. [ITL SIMA, 1997] IC,ICAC (Acquired Culmination) | The verb phrase acquires culmination from some sourceother than the verb. The acquired culmination comes from the combination of theverb and its arguments and/or additional phrases and clauses, but the verb by itselfdoes not have culmination. Since culmination is acquired from somewhere other thanthe verb, additional codes (described later) appear in the coding of the followingexamples:2(11) a. Glue panels together with white or yellow glue. AC[adv]b. Apply leak detection compound around fuel tank access panel. AC[pp]c. Press the 2 buttons at the same time to press the parts together.AC[pc-to:AC[adv]]AT (Acquired Termination) | The verb phrase acquires only termination (i.e. it doesnot gain a characteristic change of state) from some additional phrase or clause; theverb does not have any termination associated with it. For example:(12) a. Pull in one direction to re�ne cutting edge. AT[pc-to:IC]b. Bleed until uid stream is free of air. AT[until]c. Push hard when putting the armature into the gear case. AT[when:IC]1From here on, examples from the corpus will follow the same pattern (unless otherwise noted), with abeing from [Reader's Digest, 1991], b being from [USAF, 1988], and c being from [ITL SIMA, 1997]. Thecoding of each verb phrase in an example is given, in order, in the list of codes following the example.2When an additional clause has an action that is meant to be accomplished (as in a purpose clause),the coding of verb phrase that appears in the additional clause is given after the code for the additionalclause and a colon. 37



In addition to these main codes, other codes indicate the additional phrases and clauseswhich appear with verb phrases. Multiple additional codes can appear with a main code.The codes for additional phrases within a verb phrase are:p (verb particle) | The verb and a verb particle together have culmination or terminationinformation. Verb particles can alter a verb's type so that the verb with the particlecould be considered a separate verb, but verb phrases are coded based on the verbwithout its particle. Some examples include:(13) a. Take up any water soaked carpeting and the padding underneath. IC[p]b. Turn o� air source. AC[p]c. Screw in the third set screw. AC[p]arg (verb arguments) | This code indicates that a verb argument other than a prepo-sitional phrase (see the next code) provides culmination or termination informationin conjunction with the verb. For instance:(14) a. Cut other pieces 3 1/2 in. shorter than long pieces. AC[arg]b. Apply 60-70 psig air pressure to ground air service connector. AC[arg]c. Lower the arm. AC[arg]pp (prepositional phrase) | A prepositional phrase in a verb phrase gives culminationor termination to the verb phrase. Here are some examples:(15) a. Fill a deep hole with gravel to within 4 in. of surface. IC[pp]b. Remove coupling and slide sleeve on outlet tube. IC,AC[pp]c. Slip an O-ring onto the locking pin. AC[pp]adv (adverb) | An adverb or adverbial phrase in a verb phrase provides culmination ortermination information. Examples include:(16) a. Insert a bit fully into the chuck. IC[adv]b. Screw boltheads [sic] ush with surface of protective frame. AC[adv,pp]c. Spray and wipe the unit clean. AC[oa], AC[adv]38



Additional subordinate clauses are coded as to their type:3pc-x (purpose clause using lexical item x) | A clause expressing a purpose-like relationbetween actions provides culmination or termination information to a main verbphrase. This clause need not be the linguistically-proper purpose clause of the form\to VP" (see Section 2.4). The x in the code represents the lexical item used in thepurpose clause: to, as in the standard purpose clause; by, for the means clause (asit is linguistically named); and st, standing for such that or so that. Examples ofpurpose clause codes are:(17) a. Mix mortar (p.165) so that it is a little sti�er than bricklaying mortar.AC[pc-st]b. Depress bleed valve su�ciently to obtain stream of uid ow.AT[pc-to:IC]c. Adjust the bevel pointer by tapping on it with a screwdriver until itpoints to 45 degrees. AC[pc-by:AT[until]]Notice that for to and by clauses, the subordinate verb phrase is also coded.Means clauses are included in the code for purpose clauses because they express apurpose-like relation, namely that doing the actions in the subordinate by clauseachieves the action in the main clause. Thus they indirectly express a purpose andare included with purpose clauses.fa (free adjunct clause) | Related to the purpose clause since they often convey purpose,free adjunct clauses can provide or modify culmination or termination information ormodify the manner of the action by indicating a concurrent or purposive action forthe action in the main clause. The following are some examples, all from [Reader'sDigest, 1991]:(18) a. Place blade assembly (bevel down) on the frog, engaging lateral ad-justing lever. IC[fa:IC]3Other types of additional clauses are also coded for, such as before, after, when, while, as, and for, butthey are not addressed here as they appear in less than one percent of the coded corpus.39



b. Then drill a shank hole, stopping at tape. AC[fa:IC]c. With �rm pressure, draw round shank screwdriver along edge, formingat, even burr. AT[pp,fa:IC]Free adjuncts are complex constructions, which may explain why they are only foundin the more complex portion of the corpus, namely [Reader's Digest, 1991].until (until clause) | An until clause is a simple way to convey termination for the actionin a verb phrase. In the case of instructions, the meaning of until is that an actionis performed up to the time in which the state of the world expressed in the untilclause comes into being. (For actions that inherently have culmination, adding anuntil clause changes the culmination.) For example:(19) a. Drill through assembled (but unglued) joint until bit just touches tenon.AC[pp,until]b. (C,D) Monitor fuel indicator until indicator reads 150-400 pounds ineach reservoir. AT[until]c. While holding the brush in, insert it into the slots of the �eld case untilthe brush is free to pop out and make contact with the commutator.IC[while:AC[oa],until]Finally, the code oa (other action) indicates that termination information for an actionis provided through an inferable but non-lexicalized connection with another action in theinstruction step. For example:4(20) a. Rotate pipe slowly and tap chisel with hammer until pipe breaks o�.AT[oa],AT[until]b. Slide valve aft and remove. AC[oa],ICc. Get a base assembly and lock it down on the table by pushing the button.IC,IC[pc-by:AC[oa]]4To simplify the coding process, not to mention the notation, the action which provides the terminationinformation is not indicated as part of the oa code. In the last example, the pushing action acquires itsculmination from the accomplishment of the locking action but this is not noted explicitly in the coding.40



Code DescriptionAC Verb phrase Acquires CulminationAT Verb phrase Acquires TerminationIC Verb phrase has Inherent Culminationadv An adverb adds or modi�es culmination/terminationarg Verb argument contributes to terminationfa A free adjunct contributes to culmination/terminationoa Relationship to other action provides terminationpc-x Termination from purpose clause using lexical item xp Verb particle indicates culmination/terminationpp A prepositional phrase supplies terminationuntil An until clause provides terminationTable 3.1: Summary of codes used in corpus analysis
All of the codes described above are summarized (alphabetically for reference) in Table3.1. The next section reveals the results of the coding.3.3 Results and AnalysisThe results of the coding bears out the hypothesis stated in the previous section: simplesources of termination information are more frequent. Overall, IC verb phrases representtwo-thirds of the main clause verb phrases (see Table 3.2) and the remaining third of thecorpus involves main clause verb phrases which acquire at least termination information(AC and AT verb phrases). The frequency of the additional codes (Table 3.3) showsthat the simpler ways of adding termination information are more frequent: pp and argdo not involve an additional clause. Table 3.3 lists the frequency of the additional codesover all of the verb phrase types as well as the frequency with only the AC and AT verbphrases. The fact that purpose clauses are frequent stems from their multi-purpose nature,as discussed later in Section 3.3.3.The distributions of codes for the di�erent corpora sources show their di�erent styles,with the main di�erence being the percentage of IC verb phrases (see Table 3.4). TheF-16 corpus has the highest percentage (83%) of these, the simplest source of termination41



Main VP code Frequency (%)IC 2188 (66.7)AC 869 (26.4)AT 225 (6.9)Table 3.2: Overall Frequency of Main Clause Verb Phrase CodesAdd'l Overall In AC/ATcode Frequency (%) Frequency (%)pp 433 (13.2) 423 (38.7)pc 308 (9.4) 202 (18.5)arg 222 (6.8) 222 (20.3)p 150 (4.6) 39 (3.6)oa 91 (2.8) 91 (8.3)adv 90 (2.7) 63 (5.8)fa 79 (2.4) 39 (3.6)until 55 (1.7) 47 (4.3)Table 3.3: Frequency of Additional Codes
information. As a technical order manual whose instructions must be carried out as ifthey were direct military orders, the F-16 corpus reects the philosophy that the easierit is to understand what needs to be done the better, since any mistakes could be costly.The Reader's Digest (RD) corpus has the widest range of constructions in its instructions,reecting the variety of tasks that it encompasses. It has the highest percentage (45%) ofcombined AC and AT verb phrases, indicating the relative balance between the main verbphrase types. One similarity between the corpora is that they all have roughly the samepercentage (between 12% and 15%) of verb phrases appearing with pp codes. However,within the AC verb phrases, the appearance of pp codes varies widely (only 34% in theReader's Digest and 90% in the F-16 corpus). The distribution of codes gives a sense ofthe goals of the di�erent corpora, i.e. the F-16 corpus is simple and straightforward sothat following the instructions easy while the Reader's Digest uses powerful constructionsto express quickly the most information possible.42



Code RD F-16 SIMA Code RD F-16 SIMA Code RD F-16 SIMAIC 919 1075 194 AC 587 181 101 AT 188 27 10pc 98 2 6 pp 204 164 47 pc 93 11 4fa 40 0 0 arg 201 5 14 oa 44 3 2p 33 0 0 p 91 5 20 until 25 12 1adv 27 0 0 pc 81 5 8 fa 11 0 0pp 6 4 0 adv 57 1 4 pp 8 0 0until 6 1 1 fa 28 0 0oa 27 3 11until 9 0 0Table 3.4: Code frequencies by corpora and main code
The fact that additional codes appear with IC verb phrases, especially in the Reader'sDigest corpus, indicates the possibility of modifying the inherent culmination informationthat comes from verbs. In addition, multiple additional codes can appear with one mainverb phrase, all interacting to provide the termination information for an action. Themodi�cations and interactions are not considered in the analysis and Table 3.4 shows thetotal number of occurrences of codes, regardless of whether they are in combination withothers. In the discussion that follows about use of constructions indicated by additionalcodes, co-occurrence with other constructions is not addressed.3.3.1 The use of verb arguments, particles, adverbs, and free adjunctsVerb particles, adverbs, and free adjuncts are not relied on frequently to provide actiontermination, possibly because the interaction between the verb and these other componentsis complex. Verb arguments, appearing as a source of termination in only 7% of theinstructions overall (but 20% of the AC verb phrases), are an especially complex source oftermination information. How verbs and their objects can combine to give a culminationdepends on the particular verb, the action it represents, and the type of its objects. Thetermination information from adverbs also relies on the particular verb, although certainadverbs can provide all of the termination information. Free adjuncts are very complex,relying on complicated relationships between the main action and the subordinate action43



in the free adjunct clause. Finally, verb particles can change the type of the verb and,together with the verb, can act as a new verb, usually one with inherent culmination. Thecomplexity of the interaction between verb and its arguments, adverbs, and free adjuncts,as well as the indivisible behavior of verbs and their particles, suggests that they are nottermination sources to focus on when looking for semantically simple (and therefore morereadily implementable) ways of expressing termination.3.3.2 The use of prepositional phrasesThe greatest use of prepositional phrases comes in the AC verb phrases; their use in theother verb phrase types is infrequent. Prepositional phrases can provide culmination interms of the endpoint of a path or a resulting con�guration. They mostly appear with verbsdescribing motion which have no inherent culmination ([Badler et al, 1998; Bleam et al.,1998] demonstrate this, especially for the F-16 corpus [USAF, 1988]). Both the endpointof a path and a resulting con�guration express a culmination: a path endpoint describesa new location for an object and a resulting con�guration correlates with a more generalchange of state (also shown by [Dang et al., 1998]). In fact, research in lexical semanticssuch as [Dang et al., 1997; Palmer et al., 1997] has shown that prepositional phrases areused to extend the meaning of many verbs in a regular way; that is, semantic information(e.g. an end con�guration) correlates with syntactic behavior (e.g. prepositional phrases).These facts rule out the frequent use of prepositional phrases with verb phrases thatalready have a culmination or only acquire termination. Based on their most frequent use,then, prepositional phrases can be characterized as providing an action with a culminationinvolving an end con�guration (geometric, spatial, or otherwise).3.3.3 The use of purpose clausesMuch work has been done in the area of characterizing purpose and means clauses (seeSection 2.4). The corpus analysis presented here agrees with many of the observations madepreviously. Since purpose clauses are popular for a variety of uses, they are found in allthree verb phrase types (see Table 3.5). Their use in IC verb phrases is to provide mannerinformation or to modify the culmination provided inherently by re�ning or clarifying it. In44



Code % w/pcIC 4.8AC 10.8AT 48.0Table 3.5: Co-occurrence of verb phrase types with purpose clauses% to by stOverall 85.4 9.7 5.5in main IC VP 76.4 23.6 0.0in main AC VP 78.7 5.3 15.9in main AT VP 99.1 0.0 1.8Table 3.6: Purpose clause distribution by lexical item and main verb phrase code
AC verb phrases, they are less frequent than other types of additional phrases and clauses;motion verbs that appear in AC verb phrases have simpler choices, such as prepositionalphrases, for gaining culmination information. For AT verb phrases, purpose clauses arethe most frequent way of acquiring termination information. By giving the purpose fordoing an action that does not inherently have termination, the action's termination isunderstood to coincide with the ful�llment of the purpose. In this way, both the high-levelaction (i.e. the purpose) and how to accomplish it are given in the same sentence, makingan e�cient presentation of information.The kind of purpose clause also varies with the verb phrase type it co-occurs with. Themost frequent kind of purpose clause is the standard to purpose clause, however as shownin Table 3.6, the by or means clause (see Sections 3.2 and 3.3.3) is also well-used. Below Ipresent examples from the corpus and discuss possible formalizations of the use of purposeand means clauses.Instructions which use means clauses present the task to be accomplished (i.e. thepurpose) �rst and then the means (i.e. the actions) by which it can be accomplished.This can be seen in the examples, all from [Reader's Digest, 1991], shown in Figure 3.1.55Remember that the code for a subordinate verb phrase appears after the additional code for the type45



(21) a. Empty toilet bowls and tanks by siphoning or bailing and sponging.IC[pc-by:AC[oa]]b. Assemble horse by sliding legs into channels formed by saddle's stop blocks.IC[pc-by:AC[pp]]c. Level bricks by tapping lightly with a rubber mallet. IC[pc-by:AT[oa]]d. To check the wall's batter (slope), make a batter gauge by nailing three 1x 2's to form a 90 degree angle. IC[pc-to:IC,pc-by:AC[pc-to:IC]]e. Unscrew oat by turning it counterclockwise on oat arm.IC[pc-by:AT[oa]]Figure 3.1: Examples of by purpose (means) clauses
The task is (nearly) always one with an inherent culmination and the means are (nearly)always actions which acquire culmination or termination, usually from the task for whichthey are done. Using a means clause is a straight-forward way of presenting a high-levelaction and then its sub-actions.Standard purpose clauses, those introduced with to, can appear fronted or non-fronted(see the discussion of [Thompson, 1985] in Section 2.4). In the case of the non-frontedpurpose clauses, they can provide the manner or termination (or both) of the action theymodify in addition to a purpose. Figure 3.2 gives some examples, again all from [Reader'sDigest, 1991], of non-fronted purpose clauses. In these cases, the actions expressed inthe purpose clause are usually more abstract than those expressed in the main clause ofinstructions using means clauses. The low-level actions are essential to accomplishing thetask since they provide concrete details and thus are placed before the purpose clause.In contrast to the non-fronted purpose clauses, fronted purpose clauses place high-level actions before the lower-level actions which accomplish them (see Figure 3.3). Thepurpose action in the fronted purpose clause is even more abstract than in the non-frontedpurpose clause, describing a generic action or overarching goal. In addition, the lower-levelof the higher clause. Thus, pc-to:IC means that to purpose clause contains an IC verb phrase.46



(22) a. Glue and nail one long and one short piece to form a unit.AC[oa],AC[pc-to:IC]Align all edges; then apply clamps and weights to maintain position untilglue dries. IC,AT[pc-to:AT[until]]b. Pull in one direction to re�ne cutting edge. AT[pc-to:IC]Set blade to cut through work and barely into scrap. IC[pc-to:AC[pp]]Figure 3.2: Examples of (non-fronted) to purpose clauses
actions are either two (or more) in number or complicated. The di�erence between frontedpurpose clauses and means clauses, which also put the high-level action �rst, is that thehigh-level action in fronted purpose clauses is more abstract and serves as an introductionto a complicated sequence of actions to achieve the purpose.3.3.4 The use of until clausesThe use of until clauses for providing termination information is not as common as ex-pected. They are a simple way of conveying termination, however that is all they typicallydo. When another phrasing is possible, such as a prepositional phrase or a purpose clause,an until clause is not used. For instance, the instruction Turn the dial until it is at theON position would not be used instead of the instruction Turn the dial to the ON position,even though the former conveys the proper termination. Unlike purpose clauses or prepo-sitional phrases, an until clause does not necessarily state explicit connections between theaction and its termination information (e.g. a purpose relation or an end con�guration ofa manipulated object). An until clause is capable of stating a completely unrelated termi-nation condition for an action, as in \Do your homework until your mother gets home."Although no such examples appear in the corpus, the reader must still do extra reasoningto understand how the termination condition in the until clause relates to the action inthe main clause. This burden on the reader could explain why such a simple terminationsource is infrequent, used in only 1.7% of the corpus despite appearing with nearly half of47



(23) a. To �x small blisters in linoleum or soft vinyl ooring, puncture them witha nail, and pump epoxy through nail hole, using a glue gun (p.90) with asyringe, or hypodermic, nozzle. IC[pc-to:IC],AC[pp,pc-to:IC]b. To help you keep the drill straight, position or clamp a try square orcombination square near the drill and keep the drill parallel to the square.IC[pc-to:AC[oa]],AC[oa],AC[oa]c. To make a hole of the depth you want, use a commercial drill stop or gauge,or wrap a piece of masking tape at the appropriate height on the bit.AC[pc-to:IC],IC[pc-to:IC]d. To use circular saw for cutting grooves and dadoes (p.102), mark the widthand depth of the cut. IC[pc-to:AC[arg]]e. To bend thick plywood, make saw kerfs just below the face ply at 3/16 to1/4 in. intervals. IC[pc-to:AC[oa]]f. To mark tails, �rst scribe shoulder line 1/32 in. wider than pin piece'sthickness. AC[pc-to:IC,arg]g. To cut joint �ngers, place stock against guide block and carefully pushentire assembly over turning dado head. IC[pc-to:AC[arg]],AC[pp]Figure 3.3: Examples of fronted to purpose clauses
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the F-16 AT verb phrases.3.4 ConclusionThe focus of this corpus analysis has been on the more frequent and semantically simplersources of termination and how they are used. These include prepositional phrases forexpressing the endpoint of a motion's path, purpose clauses for tying low-level actionswith high-level ones, and until clauses for stating termination conditions of actions. Thesehave been analyzed in detail since they are semantically simpler than other terminationsources, such as verb arguments and adverbs. However, except for until clauses, theyare common in maintenance instructions and thus provide a good basis for generatingtermination expressions.The corpus analysis has been used both in the development of an action representationwhich supports termination information as well as the formulation of rules for determiningwhether a particular action has termination information. These are described in the nextchapter. In Chapter 5, the encoding of how additional phrases and clauses contributeparticular action information is shown and used by the Natural Language generator togenerate complex instructions involving expressions of action termination.
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Chapter 4
Representing Objects, Actions,and Agent Expertise
The Natural Language generator SPUD (Sentence Planning Using Descriptions) [Stone,1998] reasons about Natural Language Generation (NLG) tasks using a logic theorem-prover [Stone, 1997], presenting the opportunity to develop domain knowledge which isindependently-motivated. Implementing a domain model in SPUD is much like writing alogic program since it uses modal �rst-order logic, a combination of �rst-order logic andmodal logic (see Section 2.3). Therefore, SPUD can be seen as a programming environmentfor implementing domains as well as generating text.The implemented domain model encompasses several sources of information, includinginformation about objects, actions, and agents. Object knowledge includes informationabout objects' properties and connections to other objects in the domain. Action knowl-edge represents general and speci�c information about actions in the domain, includinghow actions interact with other aspects of the domain. Agent knowledge reects whatagents and types of agents are assumed to know about the domain and its actions. Inparticular, it models di�erent agent expertise levels. After the description of the exampledomain considered in this dissertation, the rest of the chapter discusses the representationof the domain knowledge in SPUD.
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Figure 4.1: A control panel for a pump
4.1 The Example DomainInspired by the tasks found in the F-16 aircraft maintenance instruction manual (see theprevious chapter), the example domain involves a control panel for a pump (see Figure4.1). The control panel has a lever which resets the pump, a button which controls theon/o� state of the pump, a light which indicates the pump's state, a dial which controlsthe pump's pressure, and a gauge that indicates the pump's pressure. The panel also hasa cover which is held in place by a screw.This domain provides varied tasks which allows a wide range of action and agentinformation. Tasks in the domain form a collection actions and sub-actions, of whichFigure 4.2 reects a small portion. The actions can be high-level, such as normalizing thepump's pressure, and have sub-actions which are lower-level, such as turning the dial. High-level actions typically have inherent culmination (see Section 2.1) whereas low-level actionsusually do not. Therefore, a wide variety of termination information, action informationwhich indicates when to stop performing an action, is needed for many actions in thedomain. In addition, less experienced agents are less likely to know how to perform high-level actions without explicit instructions, but they are likely to know how to performlow-level actions on their own. Thus, the knowledge that agents can be assumed to haveabout actions in the domain matches the wide array of action information possible in the51
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Figure 4.2: Portion of action/sub-action tree in the control panel domain
domain. Before action and agent knowledge can be represented, however, informationabout objects and their roles in the domain must be speci�ed.4.2 Object InformationObject information includes information about speci�c objects in the domain as well asgeneral information about classes of objects. Each of the speci�c objects, physical orabstract, must be described in terms of its type, its place in a part/whole tree, and itsproperties, including its connections to other objects in the domain. Physical objects arethose that can be directly manipulated, such as screws, dials, and levers. Abstract objectscan be identi�ed in the domain, but cannot be directly manipulated. (Examples of abstractobjects will be given later.)For example, consider the screw, called screw1, which holds the cover on the panel.The �rst two pieces of knowledge in Figure 4.3 indicate screw1's type. It is a physicalobject and its type is a standard screw.1 Since the representation is a modal FOL (mFOL),the modal status of each piece of information needs to be given. In this case the modalstatus of each piece is that of common knowledge, indicated by the C modal operator,meaning that the information is assumed to be known by all agents in the domain. (Morewill be said about modal operators in Section 4.4.1.) The third item indicates the screw's1The representation of objects presented here is only one possible way among many. The speci�crepresentation chosen in this dissertation is not essential to the results.52



C physicalObj(screw1).C type(screw1, standardScrew).C partOf(screw1, cover1).C property(screw1, state, oneOf(tight,loose)).C property(screw1, defaultLocation, in(hole1)).C property(screw1, loosenDir, ccw).C property(screw1, tightenDir, cw).C property(screw1, turnable, true).C property(screw1, unique, true).Figure 4.3: Knowledge about the screw
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Figure 4.4: Part/whole object tree in the control panel domain
relationship to other objects in the domain, namely as part of the cover which in turn ispart of the panel. Figure 4.4 shows a portion of the part/whole tree which is de�ned bythe partOf and hasPart predicates.The remaining items of information in Figure 4.3 give static and dynamic propertiesof the screw. The state of an object is a dynamic property and, in this case, two states arepossible: tight or loose. Another dynamic property of a movable object is its currentlocation, but since this can range over all possible locations in the domain, it is left asan implied property. Unlike an object's current location, its default location, or whereit would be assumed to be given no other information, is a �xed property; the screw'sdefault location is in the hole (hole1). (Locations are simply represented by a relationname, such as in, on, or at, combined with the object identi�er, e.g. in(hole1)). Twomore �xed properties, namely those for the loosening and tightening directions, are also53



speci�ed (counterclockwise and clockwise, respectively). The last two pieces of informationabout the screw are also static properties: turnable, indicating that it can be turned, andunique, indicating that it is the only such object (i.e. with the exact same properties) inthe domain.In addition to this statement-like knowledge, knowledge can be formulated as rules inmFOL. For instance, a rule can state that all objects with the type standardScrew alsoare of type screw:2*O C(type(O, standardScrew) -> type(O, screw)).This rule is used to reason that standard screws are screws.3 For instance, using this rule,the fact type(screw1,screw) can be proven from the above knowledge about screw1.This allows other knowledge rules to state general properties of all screws without havingto have a separate rule for each subtype.The object information shown in Figure 4.3 is typical of most physical objects in thedomain. However, the example does not demonstrate how connections between objectsare represented. One connection is whether an object controls or is controlled by anotherobject. For instance, the dial is one source of control of the pump's pressure. Thus, in therepresentation of the dial, it would have the following property:C property(dial1, controls, pressure1).indicating that it exerts control over the abstract object, pressure1. Likewise, in therepresentation of the pump's pressure, the following appears:C property(pressure1, controlSource, dial1).This states that the pump's pressure is controlled by the dial. The connections betweenobjects can be represented and reasoned about by the theorem-prover using these types ofproperties. While these types of properties are not used in the current work, they wouldbe needed for more sophisticated reasoning about the domain and thus are included herefor further work.2*O means 8O and -> is logical implication (!).3Again, this is only one possible way to reason about object types. Such details are not critical to, nora focus of, this dissertation. 54



C abstractObj(restPos1).C type(resetPos1, position).C partOf(resetPos1, lever1).C property(resetPos1, label, reset).C property(resetPos1, location, above(defaultPos1)).C property(resetPos1, movable, false).C property(resetPos1, unique, true).Figure 4.5: Object information for the lever's \RESET" position
Abstract objects include objects that are not usually thought of as objects. As notedabove, the pump's pressure is represented as an abstract object since it is not directlymanipulable. Other abstract objects include the \RESET" lever position and the \nor-mal" range of the gauge. These are non-manipulable but identi�able (i.e. capable of beingreferred to) aspects of the domain. Figure 4.5 shows the representation of the \RESET"lever position. A property which appears in its representation which has not been men-tioned previously is the label property, which indicates the identifying label of the object.This property is also used for physical objects with labels, such as the \ON" button.The full representation of all of the objects in the domain and the rules to reason aboutthem are given in Appendix A.4.4.3 Action InformationThrough the study of maintenance activities with a mixed group of human modelingand simulation (HMS) researchers and Natural Language researchers, action informationneeded for both purposes emerged. Work by others in the area of verb semantics [Badler etal, 1998; Dang et al., 1997; Dang et al., 1998] as well as the informational requirements ofsimulating agents carrying out maintenance activities [Badler et al, 1997], along with theanalysis of maintenance instructions, contributed to the development of the action repre-sentation described below. While this dissertation work does not take advantage of all thecapabilities of the action representation, I present its full extent (so far) in order to hint55



at the range of actions and events it can represent. The rules needed for reasoning aboutaction information in terms of termination and concreteness given this representation arediscussed in 4.3.2 and 4.3.3, respectively.4.3.1 Parameterized Action Representation (PAR)For actions that are to be carried out or otherwise interpreted, their speci�cation mustinclude all of the necessary components. A representation called PAR (ParameterizedAction Representation) has been developed with this in mind. It is meant to be a com-mon representation for animating virtual agents as well as generating Natural Languageinstructions [Badler et al., 1998; Badler et al., 1999]. The structure of PAR is shown inFigure 4.6 and each component is explained below.4 Those components appearing with anasterisk (*) are not further addressed in this dissertation.*Applicability condition is a boolean expression of conditions (conditions conjoinedwith logical ands and ors) which must be true in order for the action to be appropriateto perform. These conditions generally have to do with certain properties of theobjects, abilities of the agent, and other unchangeable or uncontrollable aspects of theenvironment. Unlike a precondition (see below), it would be impossible or impracticalto try to satisfy the applicability condition as a subgoal before performing the action.During is the time interval in which the action takes place.Result is the time interval after the action is performed.Participants are those entities participating in the action.Agent is the animate entity who performs the action. The representation of theagent can include its physical attributes and its capabilities.Objects is the list of entities/objects involved in the action. The representation ofobjects can include physical properties such as geometry and current state aswell as actions de�ned for the objects. It is possible that the list could associatea role, such as instrument, along with an entity.4Although PAR appears here as a feature-structure representation, translation into mFOL is straight-forward as described later. 56
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Core semantics represents the primary components of the action.*Precondition is a boolean expression of conditions that must be satis�ed beforeattempting the action, in order for the action to be successful. Although disjunc-tions are possible, it is generally just a condition or conjunction of conditions.(The use of preconditions is the traditional method of subgoaling that is foundin planning.)Postcondition is a boolean expression of conditions which holds after the action isdone (i.e. in the result time interval). It generally predicates changes of statein object properties and/or relations between objects.Motion represents any motion component of the action. It is a substructure whichindicates the object undergoing the motion and whether the motion is trans-lational or rotational. (For the motion of objects by an agent, the causedcomponent of the motion substructure will always be true. Since this disserta-tion addresses actions done by agents, the caused component is assumed to betrue in all actions without being explicitly included.)Force represents any explicit force component of the action. It is a substructurecontaining the object to which the force is applied and the point of contact. (Ifthe point of contact is omitted, a default point of contact can be assumed tocome from the properties of the object.)Path represents path information for the action.Direction gives the direction of any motion or force. Directions can be absolute orrelative to an object or agent.*Start indicates the starting location of the motion. Locations are generally repre-sented by a relation (e.g. on, at) with an object (see the previous section).End indicates the end location of the motion.*Distance indicates the length along the path. A length consists of units (e.g.miles, degrees) and a quantity (e.g. 90).58



Purpose indicates the purpose of the action. The purpose can include a boolean expres-sion of conditions to achieve (make true), an action to generate, and/or an actionto enable.5*Manner indicates any constraints, not otherwise represented, on the manner in whichthe action is to be done.*Termination indicates any termination conditions which would not be otherwise cov-ered (e.g. by a post-condition, path endpoint, or purpose). This is needed for actionsin which there is no relation between the action and the conditions except that theaction is terminated when the conditions become true.*Duration indicates any explicit duration for the action. It is similar to the distancecomponent of path in that has units and a quantity. Although the units used forduration are usually those for time (e.g. seconds, minutes) and iteration, durationsinvolving spatial units are also possible (e.g. \Drive for ten miles").Subactions represents the breakdown of the action into its sub-steps. It is a collectionof actions connected in a graph structure which indicates the temporal relationships(if any) between the actions (e.g. whether two actions are to be done sequentially,in parallel, etc.). (For this dissertation, sub-actions are always sequential.)Previous action is an action done immediately before the action.Next action is an action which is done immediately after the action.*Concurrent action is an action which is done in parallel with the action (as indicatedby the parent action's sub-actions graph).Parent action is the action of which the particular action is a sub-step.Translation of the PAR feature-structure (FS) representation into mFOL for SPUDcould be automated. The FS representation is a simple, commonly used representationand, as such, is a good representation for knowledge that is used across applications.5For this implementation, the purpose of maintaining some condition can be loosely treated as an actionto generate. For further work, PAR should be expanded to include maintenance purposes.59



26666666666666666664
id = ua1during = t 1 1 1result = t 1 1 2participants = � agent = uobjects = (screw1, instrument(screwdriver)) �core semantics = 24 motion = � object = screw1type = rotational �postcondition = configuration(screw1, state(loose)) 35path = � direction = ccw �previous action = nilnext action = ua2parent = oa1

37777777777777777775+S during(ua1, t 1 1 1).C result(ua1, t 1 1 2).S agent(ua1, u).S instrument(ua1, screwdriver).S motion(ua1, screw1, rotational).S pathDir(ua1, ccw).S postcondition(ua1, configuration(screw1, state(loose))).S prevAction(ua1, nil).S nextAction(ua1, ua2).S parent(ua1, oa1).Figure 4.7: PAR example and its translation into mFOL
Creating mFOL statements from PAR is straightforward in general: FS attributes becomepredicates, action identi�ers become the �rst argument to the predicates, and attributevalues become additional arguments to the predicates.6 For example, Figure 4.7 showsa PAR example for an action and its translation into mFOL. Since agents are not all-knowing, actions need to be conveyed to them by the system; therefore, in the translationto mFOL, all but one piece of action information (namely, the fact that each action hasa time interval following it) is listed as system knowledge using the modal operator S(described in the next section).6For reasons of e�ciency and clarity of the implementation, the translation process is not purely syntacticalthough there is nothing fundamental to keep it from being so. For instance, adhering to the layeredstructure of PAR is not strictly necessary. A pseudo-code algorithm for the translation process used in thisimplementation is given in Appendix C. 60



*P *R C(starts(R,P) -> subinterval(R,P)).*P *R1 *R2 C(meets(R2,R1), subinterval(R1,P) -> subinterval(R2,P)).Figure 4.8: Rules for time subintervals
Since time intervals are associated with actions (i.e. the during and result slots inPAR), knowledge of how time intervals interact needs to be included in the domain knowl-edge. For the purposes of this dissertation, this knowledge includes three relationshipsbetween the time intervals (see Section 2.1). For the example action given in Figure 4.7,the following statements are also included in the action information:S starts(t_1_1_1, t_1_1).S meets(t_1_1_2, t_1_1_1).S finishes(t_1_1_2, t_1_1).to represent the time interval structure in which an interval (t 1 1) has two subintervalswhich are contiguous.7 Knowledge about time intervals also includes the transference ofproperties from intervals to subintervals where subintervals are represented by the rules inFigure 4.8.4.3.2 Reasoning about action terminationPAR represents action information needed for carrying out actions, including terminationinformation. Some reasoning is required, however, to determine all of the necessary actioninformation. For instance, if an action involving motion includes path endpoint information(e.g. \Turn the dial to the ON position"), then it has termination information, whereasa similar action without the endpoint information (e.g. \Turn the dial") does not. Thisreasoning is formalized by the �rst rule shown in Figure 4.9; it states that for all typesof motion actions involving any object and a path endpoint8, termination information is7Note that the subinterval is listed �rst in the starts and finishes relations and the later interval islisted �rst in the meets relation.8pathEnd(E,P) is equivalent to the substructure [ path = [ end = P ] ] in the PAR feature structurefor E. (See Appendix C.) 61



1. *E *O *T *P C(motion(E,O,T), pathEnd(E,P) -> termination(E)).2. *E *P C(postcondition(E,P) -> termination(E)).3. *A *P C(purpose(A,generate(P)) -> termination(A)).Figure 4.9: Rules for reasoning about termination information
available. Other components of action information that provide termination include thepostcondition and the purpose of an action and rules for these are also shown in Figure4.9. The modal FOL which SPUD uses allows such reasoning to be represented, whichis especially useful when determining what information an agent can be assumed to haveabout actions.4.3.3 Reasoning about concreteness of actionsIn this dissertation, I take a concrete action to be one which includes the necessary infor-mation for performing the intended action. An action instance containing all the necessaryinformation for its performance can be taken by a Natural Language generator to producean e�ective instruction. If an action instance is not concrete, then its description will notbe e�ective. For example, if it is intended for an agent to turn something clockwise, thendirection information needs to be included in the action instance. This can be seen as anextension of reasoning about the termination information provided by an action. Simi-lar rules to those given in the previous section are used to de�ne what makes an actionconcrete. For the example given above, a rule can be stated that an action that involvesmotion needs path information in order to be concrete. This, along with other concretenessrules, are shown in Figure 4.10.9The �rst rule in Figure 4.10 states that an action is concrete if it involves motion andhas path information (where path information can be a direction (1a) or an endpoint (1b)).The second rule states that an action involving force is concrete if it includes informationabout its magnitude and direction. The next two rules involve purpose relations between9SPUD notation: ? means 9, * means 8, and , (comma) means ^ (and).62



1. *A *O *T C(motion(A,O,T), path(A) -> concrete(A)).(a) *A *D C(pathDir(A,D) -> path(A)).(b) *A *D C(pathEnd(A,D) -> path(A)).2. *A *O *W *D C(force(A,O), magnitude(A,W), pathDir(A,D) ->concrete(A)).3. *A *O *T *P C(motion(A,O,T), purpose(A,P) -> concrete(A)).4. *P C(purpose(P), (?A purpose(A,P)) -> concrete(P)).5. *A C((?S subactions(A, S), concreteAll(S)) -> concrete(A)).(a) C concreteAll(nil).(b) *A C((?N nextAction(A, N), concrete(A), concreteAll(N)) ->concreteAll(A)).Figure 4.10: Rules for concreteness
actions. If a motion action includes information about the purpose for which the actionis done, then the action is considered to be concrete. Likewise, if an action is viewed as apurpose in general (i.e. purpose(P), explained in Section 5.2.1) and serves as the purposefor another action, then the action is concrete. Finally, if an action has sub-actions andthey are all concrete, then the action itself is considered concrete. Although these rulesare oversimpli�cations, they su�ce and could be modi�ed as necessary.4.4 Agent Expertise InformationAgent expertise information includes facts that agents are assumed to know as well as rulesthat they are assumed to use to reason generally and speci�cally about objects, actions,and behaviors in the domain. By using modal operators to represent di�erent agent types,agent knowledge reects levels of experience with the domain. In Section 4.4.1, modaloperators representing three levels of agents for this domain are presented. While mostof the general knowledge about objects and actions (described in the previous sections)is shared by all agent types, knowledge about speci�c objects and actions in the domain63



is assumed to be known by only certain agent types. Section 4.4.4 presents examples ofhow general and speci�c action knowledge, discussed briey in 4.4.2 and 4.4.3, can be usedto reason how much information about a speci�c action must be given to an agent of aparticular type in order for that agent to understand how to perform the action.4.4.1 Agent TypesAgent types are represented by di�erent modal operators. Knowledge predicated with eachmodal operator indicates the assumed knowledge of the corresponding agent type. Themodal operators are de�ned as nesting, i.e. each operator encompasses the knowledge ofthe operator below it. The modal operators are as follows:S represents the system; knowledge predicated with this modal operator (for example,details of speci�c actions to be carried out) is private to the system.U3 represents the advanced agent type; this is the most knowledgeable (non-system) agenttype.U2 represents the beginner agent type; beginners have limited experience with the domain.U1 represents the novice agent type; this agent type is assumed to have no real experiencewith the speci�c domain, but may have knowledge gained from similar domains.C represents common knowledge; this modal operator is used for knowledge assumed tobe known by all possible agents, not just those represented by U1, U2, and U3.Viewing the modal operators as sets of information, the nested behavior of the operatorscould be seen as the following set relationships: S � U3 � U2 � U1 � C. This is showngraphically in Figure 4.11. For instance, a beginner agent would be assumed to have theknowledge predicated with U2 as well as the knowledge of novice agents (U1).Using other modal operators, knowledge that is private to an agent type (i.e. not inher-ited by the agent types above it) or to a particular agent (determined by prior experiencewith the agent or through some other source) can also be represented if necessary. Forgeneral reasoning about actions, the nested operators are su�cient; however, as shown in64
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Figure 4.11: Nested modal operators for agent types
the next chapter, non-nested operators are used in the generation of instructions for thedi�erent agent types.4.4.2 General knowledgeGeneral knowledge about the domain encompasses general knowledge about objects, ac-tions, and behaviors. As shown in Section 4.2, general knowledge about objects includesrules for reasoning about their types and properties. For example, the rule that states thata standard screw is a type of screw is included in general knowledge. Rules are also usedfor reasoning about properties of objects. The rule*O C(property(O, turnable, true) -> property(O, movable, true)).is an example of reasoning from a speci�c property (turnable) to a more general one(movable). Some of these rules could be restricted to certain agent types, but this imple-mentation does not do so.General knowledge about actions includes reasoning rules for the general properties ofactions, such as the rules about termination and concreteness given in Sections 4.3.2 and4.3.3. In addition, other general rules about actions are included; for instance, if an actionhas a post-condition involving the state of an object, then the post-condition will hold inthe time interval following the action:1010The binary configuration notation is used to indicate generic states of objects, not tied to anyparticular time interval. The ternary configuration relation, on the other hand, speci�es the particulartime interval for which the the predicated state of the object holds.65



*A *O *P *R C(postcondition(A,configuration(O,P)), result(A,R) ->configuration(R,O,P)).This knowledge is shared by all agents, but general action knowledge could be restrictedto certain agent types, such as in the following rule:*S *A U2(type(S,screw),postcondition(A,configuration(S,state(loose))) ->motion(A,S,rotational),(?D property(S,loosenDir,D), pathDir(A,D))).This rule states that if a screw is to be loose as the post-condition of an action, then be-ginner agents (or higher) would know, just from that information, that the action involvesrotational motion in the loosening direction of the screw.Another type of knowledge about the domain is that of the interaction of time subin-tervals and the predicate present over time intervals. In this implementation, the rule*T *S C(present(T), subinterval(T,S) -> present(S)).is used along with the rules de�ning subintervals (see Figure 4.8) to allow the reasoningthat subintervals of the present time interval can also be considered as the present. Whileother general knowledge about behaviors in the domain is not used in this implementation,rules such as those for the inertial behavior (in the frame problem sense) of objects andtheir properties could be included and used for reasoning about the domain.4.4.3 Speci�c knowledgeSpeci�c knowledge about objects, actions, and behaviors reects experience with the par-ticular domain, as opposed to experience with similar domains (reected in the generalknowledge discussed above). Speci�c knowledge about objects and behaviors includes thetypes and properties of speci�c objects as well as any quirks that particular objects have(for example, the lever could be more di�cult than usual to lift). In this implementation, Ihave assumed that all of the information about the speci�c objects in the domain is commonknowledge. Such an assumption is not generally well-founded since novice agents cannot66



*A (postcondition(A, configuration(panel1, state(open))) ->U3 ?S(subactions(A,S), nextAction(S,nil),postcondition(S, configuration(screw1,location(awayFrom(hole1)))))).*A (postcondition(A,configuration(screw1,location(awayFrom(hole1))))-> U2 ?S?N (subactions(A,S),postcondition(S,configuration(screw1,state(loose))),nextAction(S,N), motion(N,screw1,translational),pathEnd(N,awayFrom(hole1)), nextAction(N,nil))).*A *O (type(O,screw), motion(A,O,rotational) ->U1 instrument(A, screwdriver)).Figure 4.12: Agent knowledge about opening the panel
be assumed to know the speci�cs of novel objects. Making certain object information partof a particular agent type's knowledge would solve this problem if such a distinction wereuseful. As for speci�c behaviors, none have been needed in this implementation to date,but rules expressing such behaviors could be easily added.Speci�c knowledge about actions includes what actions constitute achieving or doingother actions in the domain. For instance, advanced agents might know that opening thepanel involves removing the screw. Beginner agents might know what removing the screwinvolves but not that removing the screw is a step in opening the panel. Since the modaloperators are nested, the predicated knowledge of the advanced agents (U3) does not needto include the knowledge of the beginning agents (U2), as shown in the representation ofknowledge about opening the panel given in Figure 4.12.Rules for other speci�c actions are expressed similarly and are discussed in more detailin the next chapter. The following discussion, however, presents a brief example of howthe speci�c and general knowledge discussed so far is used to reason about an agent'sknowledge about a speci�c action when presented with only certain information.
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4.4.4 Reasoning about agent knowledgeKnowledge that an agent has about the domain, as shown above, reects the assumedexperience level of the agent. This knowledge can be used in conjunction with rules aboutwhat an agent needs to know in order to perform an action (discussed previously in Sections4.3.2 and 4.3.3). The aim of encoding this knowledge is to be able to query whether anagent knows how to perform a particular action as intended given certain information. Forthe sake of clarity, I will assume that the following rule:*A C(concrete(A), termination(A) -> howToDo(A)).is in the domain knowledge and can be used to reason about whether an agent has enoughinformation to know how to do an action.11Consider the action of opening the control panel. The agent knowledge for this actionis given in Figure 4.12. What information about this action must the system give to anagent in order for the agent to know how to do the intended action? The private knowledgethat the system has for opening the panel is shown in Figure 4.13. If the agent is advanced(U3), then the information that the action has the post-condition of the panel being openis su�cient. That is, in the theorem-prover, the following queryU3(postcondition(a1,configuration(panel1,state(open))) -> howToDo(a1))can be proven since the advanced agent's knowledge (including knowledge inherited fromlower agent types) contains the knowledge that the post-condition information impliesthe rest of the information about the action and its sub-actions, i.e. concrete(a1) andtermination(a1) can be proven.For beginner agents (U2), the post-condition knowledge alone does not provide enoughinformation; that is, a query similar to the one above (replacing U3 with U2) could notbe proven. However, providing the information that removing the screw (i.e. taking thescrew out of the hole) is a sub-action of opening the panel allows the beginner agent to�gure out the rest of the action information. The query that succeeds in this case is:11For reasons explained in the next chapter, this rule is not actually used in the generation process.
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% Action: a1S during(a1, t_1).S starts(t_1, t).C result(a1, t_2).S meets(t_2, t_1).S agent(a1, u).S postcondition(a1, configuration(panel1, state(open))).S subactions(a1, oa1).S nextAction(a1, a2).S parent(a1, a).% Action: oa1S during(oa1, t_1_1).S starts(t_1_1, t_1).C result(oa1, t_1_2).S meets(t_1_2, t_1_1).S agent(oa1, u).S postcondition(oa1, configuration(screw1, location(awayFrom(hole1)))).S subactions(oa1, ua1).S nextAction(oa1, oa2).S parent(oa1, a1).% Action: oa2S during(oa2, t_1_2).S finishes(t_1_2, t_1).C result(oa2, t_2).S agent(oa2, u).S precondition(oa2, oa1).S postcondition(oa2, configuration(cover1, location(awayFrom(panel1)))).S nextAction(oa2, nil).S prevAction(oa2, oa1).S parent(oa2, a1).Figure 4.13: Action information for opening the panel (and its sub-actions)
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% Action: ua1S during(ua1, t_1_1_1).S starts(t_1_1_1, t_1_1).C result(ua1, t_1_1_2).S meets(t_1_1_2, t_1_1_1).S agent(ua1, u).S instrument(ua1, screwdriver).S motion(ua1, screw1, rotational).S pathDir(ua1, ccw).S postcondition(ua1, configuration(screw1, state(loose))).S nextAction(ua1, ua2).S prevAction(ua1,nil).S parent(ua1, oa1).% Action: ua2S during(ua2, t_1_1_2).S finishes(t_1_1_2, t_1_1).C result(ua2, t_1_2).S agent(ua2, u).S motion(ua2, screw1, translational).S pathEnd(ua2, awayFrom(hole1)).S nextAction(ua2, nil).S prevAction(ua2, ua1).S parent(ua2, oa1).Figure 4.14: Action information for opening the panel (cont'd)
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U2(postcondition(a1,configuration(panel1,state(open))),subactions(a1,oa1),postcondition(oa1,configuration(screw1,location(awayFrom(hole1))))-> howToDo(a1)).indicating the information the beginner agents need in order to perform the intended action.Finally, for novice agents (U1), all of the action information (except its instrument) mustbe provided in order for the agent to perform the action.Thus, varying amounts of action information is needed by the di�erent agent types inorder to carry out actions as intended. By using modal operators when predicating agentknowledge, di�erent levels of experience with domain can be represented and reasonedabout in order provide the appropriate action information to the agents.4.5 ConclusionKnowledge needed to reason about the domain falls into one of the types discussed above(object, action, and agent). With the mFOL representation that SPUD uses, any otherknowledge needed to model other aspects of the domain, or completely di�erent domains,could be added straightforwardly. Each of these types of information has been studiedpreviously for various reasoning tasks and the mFOL representation can be used for thesame reasoning tasks. However, these sources of information allow SPUD to reason aboutNatural Language Generation tasks as well.The ability to represent which pieces of action information contribute to the concrete-ness and the termination information of an action anchors the representation of this do-main. Without the ability to represent and reason about such information, it could not bedetermined whether actions were su�ciently de�ned to be carried out. Such an inabilitya�ects many reasoning tasks, such as planning. However, beyond the general usefulness ofrepresenting such information, the same representation supports reasoning about actionsfor Natural Language Generation purposes.SPUD reasons about what the agent knows and then generates sentences to describeactions (and whatever else needs to be described). The resulting text relies on the agent's71



knowledge and therefore it is tailored to the agent's experience with the domain. Based onthe general and speci�c knowledge assigned to each agent expertise level, less experiencedagents will receive more detailed instructions than those with more experience, who knowhow to do more in the domain. Without the ability to represent di�erent agent expertiselevels, such tailoring of generated text would not be possible. The power of SPUD liesin its use of the independently-motivated and powerful mFOL representation to generatesuch tailored Natural Language instructions e�ciently.

72



Chapter 5
Generating Instructionsusing SPUD
Along with the domain knowledge described in the previous chapter, SPUD needs lexicalinformation in order to generate instructions for actions in the domain. Lexical informa-tion includes syntax, semantics, and pragmatics for individual lexical items (i.e. wordsand phrases). Syntactic information is represented by a Feature-Based Lexicalized Tree-Adjoining Grammar (FB-LTAG), which is a powerful general-purpose lexical representa-tion (see Section 2.6). In SPUD, however, semantics and pragmatics are also associatedwith lexical items, unlike in standard FB-LTAG. In addition, pragmatic information isassociated with individual trees, each of which can represent the syntax of many di�erententries, thus specifying when it is appropriate to use a particular syntactic construction(tree). The �rst two sections of this chapter present the language model (i.e. the lexicalitems with their associated trees) used in the generation of instructions for the domainactions mentioned in Section 4.1.SPUD employs a greedy algorithm to choose which lexical items to use in a descriptionof an entity (object, event, or action) which must satisfy given communicative goals. SPUDuses a modal �rst-order logic theorem-prover [Stone, 1998] (see Section 2.3) to reasonabout the e�ect of including certain lexical items in the description, such as what thehearer infers about the entity given the description and previous knowledge. In this way,73



SPUD generates tailored, e�ective instructions based on the language model and a modelof the hearer. SPUD's algorithm is described in Section 5.3 and illustrated through thegeneration of example instructions in Section 5.4. Section 5.5 discusses the bene�ts andcosts of using SPUD for generating e�ective instructions.5.1 Basic Lexical InformationAs described in Section 2.6, FB-LTAG provides a formal, linguistically-sound way of spec-ifying lexical items and their syntactic constructions and how they combine together toform larger constructions. However, in order to generate text using FB-LTAG, semanticand pragmatic information must be associated with entries in the grammar. In SPUD,semantic information appears with individual lexical items and pragmatic information canappear with lexical items and/or their associated syntactic constructions.This work does not rely heavily on the syntactic details of TAG. The most importantpoint is how the semantics is built along with the syntactic tree. As described in [Stoneand Doran, 1997], when a substitution or adjunction operation is applied to a tree, thesemantics of the substituted or adjoined tree is simply conjoined to the semantics of theoriginal tree. Therefore, the semantics of a complicated syntactic construction is easy tocompute. The operation of SPUD relies on this ease of computation, as is shown in Section5.3.The next two sub-sections describe how lexical items and trees are speci�ed in SPUD.The remaining sub-sections briey describes the basic lexical items of the implementedlanguage model.5.1.1 Specifying lexical itemsEach lexical item in the grammar includes the word(s) which serve as anchors for the TAGtrees, the type of node that it represents, features to match when considering using it ata certain node in a partial tree, a list specifying the trees that it anchors, its completesemantics (separated into what is asserted and what is presupposed by the lexical item),and its pragmatics. An example lexical item, giving information for the transitive verb74



word = { name = { turn }basic = { true }decl = { alpha(S,R,E,O) }site = { vp(S,R,E) }match = { () }semantics = { during(E, R), motion(E, O, rotational) }presupposition = { true }pragmatics = { property(O, turnable, true) }trees = { transitiveVP(S,R,E,O) } }.Figure 5.1: Lexical item entry for the verb turn
turn, is shown in Figure 5.1. The �elds in a lexical item entry are as follows:� name gives the lexical item.� basic indicates whether the lexical item is considered a basic word, in the sense of[Rosch, 1978].� decl indicates the type of trees1 that the lexical item anchors and a list of semanticindices (i.e. arguments) used in the trees.� site indicates the type of node which the lexical item can expand, needed for deter-mining which lexical items are applicable to a given partial tree. This �eld indicatesthe top node of the trees associated with the lexical item (see below). While thiscould be automatically extracted from the associated trees, listing it explicitly withthe lexical item is more e�cient, similar to declaring a function's prototype in acomputer program.� match gives syntactic features on the site node which must be matched in order touse the lexical item at that site.� semantics contains the meaning asserted by the lexical item, using the same predi-cates as in the domain and action knowledge representation. Existential quanti�ers1alpha indicates initial trees and beta auxiliary trees; see Section 2.6.75



(e.g., ?Q for 9Q) can be used to predicate the existence of some entity which doesnot appear as a semantic argument in the trees of the lexical item (see the lexicalitem remove in Figure 5.7).� presupposition indicates what must be shared knowledge in order for the lexicalitem to be selected. See the lexical item open in Figure 5.7 for an example. This is auseful feature for producing e�cient texts [Stone and Webber, 1998], but is not usedto its full advantage in this implementation.� pragmatics provides constraints on the situations in which the lexical item canused. For instance, turn can only be used when its object has the property of beingturnable.2 In Figure 5.9, the pragmatics command for the empty subject lexicalitem indicate that the subject can only be omitted if commands (i.e. imperativesentences) are being generated. If the pragmatics for a lexical item does not hold,the lexical item will not be considered for addition to a partial tree.� trees gives the names of those trees which the lexical item can anchor. The fullstructure of these trees is provided separately (see the next section), as many lexicalitems can anchor the same tree.In the presentation of particular lexical items, only those �elds with relevant informa-tion are given; the decl �eld and �elds which are empty or only contain true are omitted.5.1.2 Specifying syntaxEach elementary tree used in SPUD has associated with it a complex name which includesits arguments, relevant pragmatic information, and a tree structure. A lexical item canparticipate in many syntactic constructions, some of which may be inappropriate in aparticular situation. Thus, pragmatic information indicates when it is appropriate to usethe syntactic structure.Tree structures specify information for each node in the tree, including their type, theirfeatures (top and bottom), whether they are substitution sites (subst) or adjunction sites2While the argument can be made that this is a semantic constraint that would be better placed in thepresupposition of lexical items (see [Stone and Doran, 1997]), I have consistently included such constraintsin the pragmatics of lexical items of the implemented language model.76



entry = {name = { simpleS(S,R,E,A) }pragmatics = { present(R) }tree = {node = {type = { s(S,R,E,A) }top = { (cat s) }bottom = { (cat s) }kids = {subst = {type = { u:np(A) }top = { (cat np; number X; person Y; case nom) }}node = {type = { ip(S,R,E) }top = { (cat ip; form main; number X; person Y) }bottom = { (cat ip; form main; number X; person Y) }kids = {node = {type = { u:infl(S,R,E) }top = { (tense present; form main; number X; person Y) }bottom = { (tense present; form main; number X; person Y) }kids = { anchor = { index = {1} } }}subst = {type = { vp(S,R,E) }top = { (cat vp; tense present; form main; number X; person Y) }}}}}}}}. Figure 5.2: Full SPUD speci�cation of the simpleS tree
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s(S,R,E,A)������ HHHHHHu:np(A)# ip(S,R,E)���� HHHHu:in(S,R,E,A)� vp(S,R,E)#Figure 5.3: Graphical speci�cation of the simpleS tree
(foot), and the nodes which are their children (kids). Figure 5.2 shows the full tree entryfor the basic sentence structure used in this implementation. Features associated withnodes pass information between nodes, such as tense and agreement information. Sincefeatures are not vital to this dissertation,3, trees are shown graphically (as in Figure 5.3)throughout the rest of this chapter.4 (Appendix A.2 contains the full speci�cation of allof the tree entries.)One �nal note about the tree speci�cation. The u: appended to a node name indicatesthat the information provided by that node need not be new to the hearer. By specifyingthat a node need not contain new information, SPUD can choose to add lexical items whichwould otherwise not meet its criteria. Although this implementation has trees which useu: for some nodes, this is not a vital aspect of the implementation and is more for furtherwork which might involve anaphors (e.g. pronouns).5.1.3 Discourse and sentence structureThe top-level \lexical items" are those which represent sentence boundaries in a discoursesegment (i.e. instruction step). The anchors for these trees include punctuation, speci�callythe period. The basic discourse segment consists of a single sentence followed by a period,3The only two features used in this implementation which a�ect the �nal output are the tense and formfeatures. Tense is needed by the morphological processing to inect the verb correctly. Form is needed bythe \means clause" entry (see Section 5.2.2) where the subordinate verb phrase must be in gerund form.4As note earlier, � indicates the anchor, # denotes a substitution site, and * speci�es an adjunction site.78



Lexical item: word = f name = f . g...site = f ds(S,R,E) g...semantics = f step(E), during(E,R) g...trees = f ds1(S,R,E) gg.Tree entry: ds(S,R,E)�� HHs(S,R,E)# .�Figure 5.4: Basic discourse segment entry
as shown in Figure 5.4. Other discourse segment entries are discussed in Section 5.2.The next level consists of sentence trees which are anchored by inection (generallytense) which a�ects the form of the verb (i.e. remove vs removes vs removed). I have usedonly two types of sentences anchored by the inection present tense since only imperativeinstructions are to be generated in this implementation. The �rst type of sentence cor-responds to the standard rule S ! NP VP (Figure 5.5) and is used for actions or events.The second is a predicative sentence, S ! NP be Pred (Figure 5.6), used for describingstates, e.g. \the screw is loose".5.1.4 Verb phrasesOnly one type of verb phrase, namely transitive, is involved in the example instructions(besides the predicative \be" verb phrases). Transitive verb phrases consist of the verband its direct object (see Figure 5.7). One reason for not addressing other types of verbphrases, such as intransitive or ditransitive, is the nature of maintenance instructions.They involve the manipulation of objects, thus intransitive verb phrases (i.e. verb phraseswithout direct objects) are not found. The explicit manipulation of more than one objectat a time or the involvement of another agent is rare in these instructions, so ditransitiveverb phrases (i.e. verb phrases with a direct object and a required indirect object) are79



Lexical item: word = f name = f present g...site = f s(S,R,E,A) g...semantics = f during(E,R), agent(E,A) g...pragmatics = f present(R) gtrees = f simpleS(S,R,E,A) gg.
Tree entry: s(S,R,E,A)����� HHHHHu:np(A)# ip(S,R,E)���� HHHHu:in(S,R,E)� vp(S,R,E)#Figure 5.5: Simple sentence entry
Lexical item: word = f name = f present g...site = f s(S,R,configuration(O,P)) g...semantics = f configuration(R,O,P) g...trees = f predS(S,R,configuration(O,P)) gg.
Tree entry:

s(S,R,con�guration(O,P))������ HHHHHHu:np(O)# ip(S,R,E)����� HHHHHu:in(S,R,E)� vp(S,R,P)��� HHHv(be)be pred(R,O,P)#Figure 5.6: Predicative sentence entry80



also rare. However, maintenance instructions frequently involve the motion of objectsand therefore prepositional phrases are needed to specify path information for the actionsinvolving motion. Such path information is optional and therefore not considered part ofthe verb's argument structure. To give SPUD the option to include path information in anaction description, prepositional phrases are encoded as auxiliary trees which adjoin ontoverb phrases. The lexical item to introducing a prepositional phrase is used to indicatethe end of a path (see Figure 5.8).5 (For a discussion of encoding motion verbs and theirproperties using a TAG formalism, see [Palmer et al., 1999].)5.1.5 Noun phrasesTwo types of regular noun phrases are encoded in the current implementation, an inde�nitenoun phrase with the determiner a and a de�nite noun phrase without a determiner (sinceit is typically omitted in maintenance instructions).6 Pragmatics, in this case, whether theobject is uniquely identi�able or not, determines which NP tree is used.7 The semanticsfor nouns consists of its type, e.g. type(O,panel). Any additional information about anobject, such as a label, can be adjoined into a noun phrase with an adjective auxiliary tree.For the de�nition of these lexical items and trees, see Appendix A.In addition to these regular noun phrases, a noun phrase for an empty subject isspeci�ed so that proper subject-less (i.e. imperative) instructions can be generated. Thelexical item for the empty subject (indicated by the speci�cation for nominative case in thematch �eld) has the semantics that the subject is the hearer and pragmatic informationwhich indicates that it is only appropriate when the predicate command holds, indicatingthe generation of instructions (see Figure 5.9).8 A similar tree structure (with di�erentsyntactic features) could be used to generate instructions which elide the object which isin focus, a common occurrence in naturally-occurring instructions (e.g. Slide valve aft and5The predicate locObj is used to take the object out of a location relation; for example,locObj(at(panel1),panel1)holds and can be used to bind a variable (such as O) to the object identi�er (panel1).6While plural noun phrases appear frequently in maintenance instructions, they are not addressed inthis dissertation. While the number of the noun phrase (i.e. singular vs. plural) which serves as a verb'sargument does a�ect the termination information and other performance information of the action, it isnot one of the sources of termination information that I chose to address.7As implemented, all objects in the domain are uniquely identi�able.8The e which serves as the anchor for the tree is removed by morphological processing.81



Lexical entries:word = fname = f open g...site = f vp(S,R,E) g...semantics = f during(E,R),postcondition(E,configuration(O,state(open))) gpresupposition = f configuration(R,O,state(closed)) g...trees = f transitiveVP(S,R,E,O) gg.word = fname = f move g...site = f vp(S,R,E) g...semantics = f during(E,R), motion(E, O, translational) g...pragmatics = f property(O, movable, true) gtrees = f transitiveVP(S,R,E,O) gg.word = fname = f remove g...site = f vp(S,R,E) g...semantics = f during(E,R),(?L?X configuration(R,O,location(L)), locObj(L,X),postcondition(E,configuration(O,location(awayFrom(X))))) g...pragmatics = f property(O, movable, true) gtrees = f transitiveVP(S,R,E,O) gg.Tree entry: vp(S,R,E)��� HHHv(E)� u:np(O)Figure 5.7: Transitive verb entries for open, remove, and turn
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Lexical item: word = f name = f to g...decl = f beta(S,R,E,P,O) gsite = f vp(S,R,E) g...semantics = f pathEnd(E,P), locObj(P,O) g...trees = f bVPpp(S,R,E,P,O) gg.
Tree entry: vp(S,R,E)��� HHHvp(S,R,E)� pp(P)�� HHp� u:np(O)#Figure 5.8: to lexical item (prepositional phrase)

Lexical item: word = f name = f e g...site = f np(A) gmatch = f (case nom) gsemantics = f hearer(A) g...pragmatics = f command gtrees = f epsilonNP(A) gg.Tree entry: np(A)�Figure 5.9: Lexical entry for an empty subject
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remove). This implementation does not address such eliding of objects in instructions, butSPUD is capable of handling such a construction.5.2 Multi-clausal lexical itemsIn order to express necessary action information such as sub-actions, some instructionsrequire multi-clausal sentences or even multiple sentences. The multi-clausal lexical itemswhich make these instructions possible are described in this section. In order to choosebetween a single clause and multiple clauses, however, SPUD must be given preferencesto guide the choice of the appropriate lexical items. Since SPUD uses a greedy algorithmwithout backtracking (see Section 5.3), such guidance is crucial. If SPUD chooses a lexicalitem which precludes improvements later in the generation process, SPUD has no way toundo the choice. As currently implemented, SPUD must make the right choice �rst. Thus,the issue of stylistic preferences, i.e. guiding SPUD to make the right choice, is presentedbefore the presentation of the multi-clausal lexical items.5.2.1 Stylistic preferencesMany researchers have addressed the issue of generating tailored text to reect stylisticpreferences when addressing di�erent types of hearers. (See the discussions of [Paris, 1988;Bateman and Paris, 1989; McKeown et al., 1993; Nicolov et al., 1996] in the next chapter.)[Bateman and Paris, 1989], in particular, recognize that hearers with di�erent levels ofexperience with the domain require di�erent phrasing of information. When implementinglexical constructions for this dissertation, I found that in order to get appropriate phrasingsand levels of detail based on the agent type, SPUD needs either information about agentsin addition to the agent knowledge discussed in Chapter 4. Therefore, as part of agentknowledge, I include how agents view certain kinds of actions, which a�ects how SPUDdescribes them to di�erent agents.Since an agent's view of actions is private to the agent and should not be treated asinheritable or shared by agents at other levels, the nested modal operators described inthe previous chapter will not work. Additional modal operators are needed to predicate84



knowledge of the agent types' views of actions. They are de�ned as follows:P1 encompasses the novice agent type's views of actions and knowledge of the domain.In terms of the other modal operators, it inherits all the knowledge predicated withand inherited by U1, i.e. P1�U1.P2 represents the beginner agent type's views and knowledge, such that P2�U2. Noticethat knowledge predicated with P1 is not included in the knowledge of the beginneragents (unlike knowledge predicated with U1).P3 represents the advanced agent type's views and knowledge, such that P3�U3.For the system to use knowledge of agent type in generating instructions, its knowledgemust encompass all of the assumed knowledge of the agents, including agents' views ofactions. That is, S � (P1 [ P2 [ P3) where S is the system's modal operator. With thismodal machinery in place, preferences (i.e. views) for each agent type can be de�ned.For novice agents, non-basic (i.e. higher-level) actions in the domain seem compli-cated since they involve sub-actions. This view is encoded in a predicate called complex.For instance, the fact that a novice agent views opening any object in the domain as acomplicated action is represented by the following rule:9*A *O (postcondition(A,configuration(O,state(open))) -> P1 complex(A)).Some particularly complicated higher-level actions, which involve complex sub-actions,require a separate predicate called elaborate to indicate how novice agents view suchactions. For beginner agents, certain actions are viewed as purposes for other actions,indicating beginner agents' increased understanding of the domain. A purpose predicateis used to indicate those actions which are viewed as purpose actions.In the following presentation of multi-clausal lexical items, these predicates appear inthe pragmatics for some of the lexical item entries, indicating when particular constructionsshould be used because of the agents' view of an action.9Alternatively, rules which reason about the hierarchical level of the action could be used instead ofrelying on semantic features of the action.
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Lexical item: word = f name = f by g...decl = f beta(S,R,P,E,T) gsite = f vp(S,R,P) g...semantics = f subactions(P, E),during(E, T), starts(T, R) g...trees = f VPcomp(S,R,P,E,T) gg.
Tree entry: vp(S,R,P)���� HHHHvp(S,R,P)* cvp(S,T,E)��� HHHcomp� vp(S,T,E)#Figure 5.10: Means clause entry
5.2.2 Purpose and means clausesOne way of expressing how to do an action is to describe the means by which it can beaccomplished. This can be done by adjoining to the main clause a subordinate meansclause introduced by the lexical item by. The means clause lexical item and tree is shownin Figure 5.10.10 This is the simplest way to express an action's sub-actions.Sometimes, however, it may be appropriate to emphasize a sub-action by putting it inthe main clause. Sentences with purpose clauses achieve this since the subordinate action isdescribed in the main clause and the purpose is described in a subordinate clause anchoredby to. The two types of purpose clauses, discussed in Section 3.3.3, di�er in whether thepurpose clause expressing the higher-level action is before or after the main clause. Thecase where the purpose clause is adjoined to the end of the main clause is shown in Figure5.12. Due to the hierarchical nature of actions in maintenance tasks and the fact that the10beta in the decl �eld indicates that the lexical item is associated with auxiliary trees which are addedto other trees using adjunction. 86



Lexical item: word = f name = f . g...site = f ds(S,R,E) g...semantics = f step(E), during(E,R),substep(P,E), during(P,T) g...pragmatics = f purpose(E) g...trees = f ds3(S,T,P,R,E) gg.Tree entry: ds(S,R,E)��� HHHs(S,T,P,A)# �Figure 5.11: Discourse segment entry for emphasizing actions done for a purpose
higher action is typically the one being described, a discourse segment tree encodes theemphasis on the sub-action (i.e. its expression in the main clause). In the normal discoursesegment entry (see Figure 5.4), the sentence node is given as s(S,R,E,A), where E is thehigher action. However, in the discourse segment for cases in which the sub-action is donefor the purpose of the higher-level action, the sentence node is s(S,T,P,A) where P is thesubordinate action and T is the time interval in which it occurs (see Figure 5.11). Thepragmatics of this discourse segment tree indicates that if the agent views the main actionas a purpose action, then the discourse segment entry shown in Figure 5.11 will be used.Once this discourse segment entry is chosen based on its pragmatics, the lexical item tocan adjoin a purpose clause to express the high-level action.When an action is viewed as complex by the hearer, I want to be able to express themain action in a fronted purpose clause (see Figure 5.13) in order to provide a frameworkfor interpreting the subordinate action described in the main clause (see Section 3.3.3).Unlike the non-fronted purpose clause which adjoins to a verb phrase, this one must adjoinonto a sentence node. This allows complicated descriptions of the sub-action(s) to be inmultiple clauses in the sentence without creating a convoluted sentence. The pragmaticsof this construction speci�es that in order for this fronted purpose clause to be applicable,87



Lexical item: word = f name = f to g...site = f vp(S,R,E) g...semantics = f purpose(E,generate(P)), during(P,T) gpragmatics = f purpose(E) gtrees = f compVP(S,R,E,P,T) gg.
Tree entry: vp(S,R,E)���� HHHHvp(S,R,E)� cvp(S,T,P)��� HHHcomp� vp(S,T,P)#Figure 5.12: Purpose clause entry
SPUD must be generating instructions (i.e. command holds11) in addition to the mainaction being viewed as complex by the agent.5.2.3 Until clausesSome maintenance instructions use until clauses to convey an action's post-condition. InSPUD, these adjoin onto verb phrases, providing a substitution site for a sentence describ-ing the post-condition of the action (see Figure 5.14).12 (A similar tree would be used byother lexical items, such as while, which involve the adjunction of a sentence to a verbphrase, but di�erent features would need to be associated with the adjoined sentence toreect the di�erent syntactic requirements of the lexical item.) Since an action's resulttime interval is common knowledge, this knowledge can be presupposed semantics of thelexical item.11Alternatively, if sentence type were included in the features of the trees, the match �eld in the lexicalitem could be used to enforce the need for an imperative sentence.12\Fronted" until clauses, such as in \Until the light turns green, hold the lever at the RESET position",are not found in the corpus of maintenance instructions described in Chapter 3.88



Lexical item: word = f name = f to g...site = f s(S,R,P,A) g...semantics = f subactions(P, E), agent(E,A),during(E, T), starts(T,R) g...pragmatics = f command, complex(P) gtrees = f compSfronted(S,R,P,E,T,A) gg.
Tree entry: s(S,R,P,A)�������� HHHHHHHHcs(S,R,P,A)��� HHHcomp� u:s(S,R,P,A)� , s(S,T,E,A)#

Figure 5.13: Fronted purpose clause entry
Lexical item: word = f name = f until g...site = f vp(S,R,E) g...semantics = f postcondition(E, P) gpresupposition = f result(E, T) g...trees = f VPcompS(S,R,E,P,T) gg.
Tree entry: vp(S,R,E)���� HHHHvp(S,R,E)� cs(S,T,P)��� HHHcomp� s(S,T,P)#Figure 5.14: Until clause entry89



Lexical item: word = f name = f and then g...site = f vp(S,R,E) g...semantics = f nextAction(E,N), during(N,T) g...trees = f bVPconjoin(S,R,E,N,T) gg.Tree entry: vp(S,R,E)���������� @@@ PPPPPPPvp(S,R,E)� � � vp(S,T,N)#Figure 5.15: Entry for conjoining verb phrases (\and then")
5.2.4 Conjoining clausesFor instructions that need to describe two consecutive actions in the same sentence, thetree anchored by \and then" in Figure 5.15 is used to adjoin another verb phrase to anexisting verb phrase. Although there can be problems with conjunction due to in�niterecursion, this entry has been used without di�culty for the example instructions.5.2.5 Multi-sentence instruction stepsComplicated actions with multiple sub-actions require multiple sentences to describe. Atreatment similar to that of adjoining verb phrases as in Figure 5.15 would be preferable forissues of uniformity and discourse structure. However, in the interest of e�ciency for thisimplementation, the entry for a multi-sentence discourse segment shown in Figure 5.16 isused. It is anchored by periods and the word then (to indicate the sequential nature of thesub-actions), with the pragmatics of elaborate(A), indicating that this discourse segmentstructure should be used when the agent can be assumed to view the high-level action asvery complicated. Without the statement of its pragmatics and the accompanying agentknowledge bearing out the appropriateness of this tree, the use of this tree would not begiven a high enough ranking to be chosen as the discourse segment structure since it has90



Lexical item: word = f name = f . Then g...site = f ds(S,R,E) g...semantics = f step(E), during(E,R),substep(E1,E), during(E1,R1),nextAction(E1,E2), during(E2,R2) g...pragmatics = f elaborate(E) gtrees = f ds2(S,R,E,R1,E1,R2,E2) gg.Tree entry: ds(S,R,E)�������������������� HHHHHHH XXXXXXXXXXXXXs(S,R1,E1,A)# .� Then� s(S,R2,E2,A)# .�Figure 5.16: Multi-sentence discourse segment entry
more un�lled substitution sites than other choices. The next section discusses SPUD'salgorithm for generating text, which should clarify the need for such stylistic preferences.5.3 The SPUD AlgorithmWhen told to describe a particular action instance, SPUD uses the information about theaction, the agent, the domain, and the lexical items to choose a lexical item which bestfurthers the description of the action and the satisfaction of other communicative goals. Itemploys a simple greedy algorithm, briey described in Figure 5.17.13 (See [Stone, 1998]for a full description.)One communicative goal that SPUD always has is to identify all entities in the descrip-tion uniquely. SPUD calculates the distractors for an entity given the information in itsdescription so far in order to �gure out whether the entity is uniquely identi�able fromthe description. Distractors are those entities in the domain of the entity that can have13A possible variant of this algorithm is one which relaxes the restriction of requiring additions to provideimmediate improvement. Additions which do not improve the tree immediately can pave the way for futureadditions which will satisfy goals. 91



� Start with a tree with one node, which is a substitution site for a given type (e.g.DS or NP), to describe a given entity (e.g. action or object).� While the current tree contains un�lled substitution sites or there are unsatis�edgoals:{ Consider all trees resulting from a single addition (i.e., a substitution or adjunc-tion) to the current tree.{ Compute the rank of the resulting trees based on� the number of goals satis�ed,� the number of distractors for the unsatis�ed goals,� the number of aws (e.g., un�lled substitution sites),� the speci�city of licensing (semantic) information (i.e., SPUD gives a lowerrank to trees which provide a subset of the semantic information providedby another tree), and� whether the added lexical item is basic or not.{ If there are no lexical items which can be added to the tree or there is noimprovement in satisfying goals, leave the loop.{ Otherwise, make the highest ranking tree the current tree and go to the begin-ning of the loop.� Return the current tree (after morphological processing) and its derivation status:{ If it satis�es all goals, then SPUD reports derivation completed successfully.{ If it satis�es some goals but none of the possible additions could satisfy unsat-is�ed goals, then SPUD reports no more improvement.{ If there are unsatis�ed goals and un�lled substitution sites, but no lexical itemswhich could be added at all, then SPUD reports no actions possible.Figure 5.17: SPUD's algorithm
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the same description. In order to allow SPUD to reason whether an entity is uniquely de-scribed, the knowledge provided to SPUD must include domain statements for all entitiesthat need to be described. The following rules su�ce for providing these statements forobjects and locations, indicating that any object could be confused with any other objectand similarly for locations:*O1 *O2 (object(O1), object(O2) -> C domain(O1,O2)).*P *Q (location(P), location(Q) -> C domain(P, Q)).In addition, each action instance needs to have domain statements as well; however, in thisimplementation, action entities (i.e. instances) have only one domain statement, namelythat it is the only entity its domain (e.g. C domain(a1,a1)). If the calculated distractorlist for an entity is not empty, then further information must be included in its descriptionto identify it uniquely.Other types of communicative goals, such as making sure an action's description isconcrete and includes termination information, are also consulted when deciding whichlexical item to add to a tree. SPUD considers all of the information provided by the treethat it has built so far. If a communicative goal has not been satis�ed, then a lexical itemwhich provides information which will satisfy the communicative goal will be highly rankedfor inclusion in the description. Of value to the current work is that SPUD's algorithmaccounts for the fact that termination information can be provided by many di�erentparts of a sentence. If SPUD is given the communicative goal of conveying terminationinformation and the current tree does not yet provide it, SPUD will try to add a lexicalitem (possibly introducing another clause) which gives termination information. In thenext section, the generation of example instructions is described in detail, illustrating howSPUD's algorithm works.5.4 Generating Example InstructionsA set of three higher-level actions makes up the actions considered for this dissertation.These are sub-steps of one major action in the domain, that of restarting the pump once ithas halted because of high pressure. (See Section 4.1 for the description of the domain and93



Re-start the pump (a)
�������������

�
HHHHHHHHHHHHH

H
Open the panel (a1)���� HHHHRemove the screw (oa1)�� HHua1 ua2 oa2 Normalize the pressure (a2)na1 Start the pump (a3)���� HHHHReset the pump (sa1)�� HHra1 ra2 sa2Leaf English gloss of action informationua1 Turn the screw counterclockwise until it is looseua2 Take the screw out of the holeoa2 Remove the coverna1 Turn the dial clockwise until the gauge is in the normal rangera1 Raise the lever to the RESET positionra2 Hold the lever until the light turns greensa2 Press the ON buttonFigure 5.18: Actions for example instructions

Section 4.3.1 for the action representation.) Each of the three actions have sub-actions ofits own, as shown in Figure 5.18. The leaves of this action/sub-action tree represent thoseactions considered basic, i.e. those with no further breakdown into sub-actions.In Section 5.4.2, I describe in detail how the instructions for the �rst action are gener-ated for each of the agent types. The description pulls together how all of the informationdiscussed in this chapter and the previous one are used by SPUD to generate e�ectiveinstructions. In Sections 5.4.3 and 5.4.4, I point out interesting features of the generationof the instructions for the other two actions. First, however, SPUD needs one more pieceof information in order to generate the instructions.
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gen = {name = { Step 1 for Advanced }private = { S $ }shared = { P3 (P3 present(t_1) -> $) }describe = { ds(s,t_1,a1) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a1) termination(a1) }}. Figure 5.19: An example generation instance (Step 1 for Advanced)
5.4.1 Generation instancesAs can be surmised from the discussion of SPUD's algorithm, SPUD needs to know theentity to be described, the type of syntactic category (i.e. DS, S, etc.) to describe the entity,communicative goals to be achieved by the description of the entity, and the speci�cationof the modal operators for the system's knowledge and the agent's knowledge. These piecesof information are provided to SPUD in a generation instance which is used to start thegeneration process. Figure 5.19 shows an example generation instance. The �elds thatmake up a generation instance are as follows:name states the name to be displayed in the list of de�ned generation instances.private gives the modal operator, e.g. S, designated for the system's private knowledge;$ stands for an arbitrary statement, indicating that any statement predicated withor inherited by the designated modal operator is system knowledge.shared gives the modal operator, P3, designated for the hearer's assumed knowledge. Anadditional piece of information, namely P3 present(t 1), is added to the assumedknowledge using the form shown in the example. This indicates that during the gen-eration process, present(t 1) should be considered shared knowledge thus licensingthe use of present tense lexical items.1414Another way to accomplish this would be to use features �eld.95



describe indicates the type of syntactic construction to be generated; this includes thespeci�cation of the entity (and related entities), in the form of the arguments of thesyntactic construction, to be described; in this case, a discourse segment is spec-i�ed with the arguments: s (the speech time), t 1 (the event time), and a1 (theevent/action).pattern indicates the argument structure of the syntactic construction indicated in thedescribe �eld; it is used to match against the site �eld in lexical items.features lists any features required of the syntactic construction; this �eld has not beenused in any of the generation instances in this dissertation.15communicate lists communicative goals (in addition to that of describing the entityuniquely) to be achieved by the generated text; e.g. the statements concrete(a1)and termination(a1) serve as communicative goals that must be satis�ed, i.e. thegenerated text must supply information to make these statements provable using theshared modal operator.5.4.2 Opening the panelOpening the panel is the �rst step in the sequence of actions for re-starting the pump (seeFigure 4.2). The action information for this top-level action, called a1, is shown in Figure5.20. The step predicate is used to indicate the action's standing in the action/sub-actiontree; in this case, it is a main instruction step and therefore is suitable to be described usinga discourse segment (see Section 5.1.3).16 The rest of the action information conforms tothe action representation presented in Section 4.3.1. The action occurs during the timeinterval t 1, which starts the time interval t, and results in the time interval t 2. Theagent of the action is the hearer, represented by u as indicated by the following statementsincluded in the domain knowledge:15The features �eld could be used to require the generated text to be in present tense, instead of usingthe additional piece of knowledge in the shared �eld. If it were to be used in this way, the features �eldfor the example would be (tense present).16A rule could be used to specify this information automatically by checking the distance from the actionto a leaf below it or to the top-most action. 96



S step(a1).S during(a1, t_1).S starts(t_1, t).C result(a1, t_2).S agent(a1, u).S postcondition(a1, configuration(panel1, state(open))).S subactions(a1, oa1).S nextAction(a1, a2).S parent(a1, a).Figure 5.20: Action information for opening the panel
C hearer(u).C domain(u,u).The action's post-condition states that the panel is in the state open and the action hasoa1 as its �rst sub-action.17 Finally, the action that follows a1 is a2 and its parent is theaction named a.18The action information for a1's two sub-actions, called oa1 and oa2, is shown in Figure5.21. The �rst sub-action, oa1, has the additional property of being a , which is used in thesemantics of the lexical items for discourse segments. Otherwise, the action informationis self-explanatory. The �rst sub-action has sub-actions of its own, shown in Figure 5.22.These detail the steps involved in removing the screw: loosening the screw and taking itout of the hole. Given these three levels of action detail, the action description for a1 canhave many forms depending on the agent's expertise and the communicative goals to besatis�ed.The lexical items that could be needed for this action description include: verbs foropening, removing, and turning; nouns for panel, cover, and screw; an adverb for counter-clockwise; until; purpose and means clauses (to and by); the empty subject noun phrasefor imperative; sentence and discourse segment entries. Speci�cation of these lexical itemscan be found in previous sections or Appendix A.17Only the �rst sub-action is listed since nextAction statements are used to �nd the next sub-action.18An additional statement about the action is the domain statement, i.e. C domain(a1,a1), discussedpreviously. 97



% Action: oa1S substep(oa1, a1).S during(oa1, t_1_1).S starts(t_1_1, t_1).C result(oa1, t_1_2).S agent(oa1, u).S postcondition(oa1, configuration(screw1, location(awayFrom(hole1)))).S subactions(oa1, ua1).S nextAction(oa1, oa2).S prevAction(oa1, nil).S parent(oa1, a1).% Action: oa2S during(oa2, t_1_2).S meets(t_1_2, t_1_1).S finishes(t_1_2, t_1).C result(oa2, t_2).S agent(oa2, u).S precondition(oa2, configuration(screw1, location(awayFrom(hole1)))).S postcondition(oa2, configuration(cover1, location(awayFrom(panel1)))).S nextAction(oa2, nil).S prevAction(oa2, oa1).S parent(oa2, a1).Figure 5.21: Action information for removing the screw and the panel
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% Action: ua1S during(ua1, t_1_1_1).S starts(t_1_1_1, t_1_1).C result(ua1, t_1_1_2).S agent(ua1, u).S instrument(ua1, screwdriver).S motion(ua1, screw1, rotational).S pathDir(ua1, ccw).S postcondition(ua1, configuration(screw1, state(loose))).S nextAction(ua1, ua2).S prevAction(ua1,nil).S parent(ua1, oa1).% Action: ua2S during(ua2, t_1_1_2).S meets(t_1_1_2, t_1_1_1).S finishes(t_1_1_2, t_1_1).C result(ua2, t_1_2).S agent(ua2, u).S motion(ua2, screw1, translational).S pathEnd(ua2, awayFrom(hole1)).S nextAction(ua2, nil).S prevAction(ua2, ua1).S parent(ua2, oa1).Figure 5.22: Action information for how to remove the screw
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% Knowledge for opening the panel*A (postcondition(A, configuration(panel1, state(open))) ->U3 ?S(subactions(A,S),postcondition(S, configuration(screw1,location(awayFrom(hole1)))))).*A (postcondition(A,configuration(screw1,location(awayFrom(hole1))))-> U2 ?S?N (subactions(A,S),postcondition(S,configuration(screw1,state(loose))),nextAction(S,N), motion(N,screw1,translational),pathEnd(N,awayFrom(hole1)), nextAction(N,nil))).*A *O (type(O,screw), motion(A,O,rotational) ->U1 instrument(A, screwdriver)).*A *O (postcondition(A,configuration(O,state(open))) ->P1 complex(A)).Figure 5.23: Agent knowledge for Step 1
The assumed knowledge of the di�erent agent types with respect to this action is shownin Figure 5.23. These rules state that:� advanced agents know that opening the panel involves the sub-action of removingthe screw;19� beginner agents know that removing the screw involves a set of sub-actions for loos-ening the screw and taking it out of the hole;� novice agents know that opening a panel involves taking away its cover and thatturning a screw involves a screwdriver;� and �nally, an action involving the opening of any object should be considered acomplex action for a novice agent.Using this agent knowledge, SPUD can determine the most appropriate action descriptionfor a1 when addressing a speci�c agent type.19Even though advanced agents are at the top-level of agents, and thus none of the lower agent levelswould ever inherit knowledge from advanced agent knowledge, the potentially inheritable modal operator U3100



DS(s,t 1,a1)������ HHHHHHS(s,t 1,a1,u)���� HHHHNP(u)# IP(s,t 1,a1)���� HHHHInpresent VP(s,t 1,a1)#
.

step(a1), agent(a1,u), during(a1,t 1), present(t 1)Figure 5.24: Generation of Step 1 for Advanced, part 1
The generation instance to get SPUD to generate an action description for a1 foradvanced agents was given in Figure 5.19. It instructs SPUD to describe the action a1at time t 1 in a discourse segment so that the communicative goals concrete(a1) andtermination(a1) are satis�ed. The generation process begins with a tree with a singlesubstitution site, ds(s,t 1,a1). The only applicable discourse segment tree is ds1 (seeFigure 5.4), with a single substitution site for a sentence, s(s,t 1,a1,u). All the otherdiscourse segment trees have pragmatics which do not hold and therefore are not applicable.Next, a tree which applies to a sentence node must be selected. In this case, present(t 1)holds, so the simpleS tree (see Figure 5.5) is chosen and added to the tree. At this point,the current tree and its associated semantics are as shown in Figure 5.24.Next the verb open is chosen, since it furthers the description the most and satis�es thecommunicative goals. Once the verb phrase has been substituted, only the noun phrasesremain to be �lled in. The empty subject noun phrase is chosen because of its pragmaticsand a de�nite noun phrase (without a determiner; see Section 5.1.5) is substituted for theobject noun phrase. The resulting tree and its semantics are shown in Figure 5.25. Figure5.26 shows the actual output window displayed by SPUD, indicating the order in whichis used instead of the private P3 modal operator in order to indicate that the predicated knowledge shouldbe considered objective (as opposed to subjective and therefore private) knowledge about the domain.101



DS(s,t 1,a1)������� HHHHHHHS(s,t 1,a1,u)���� HHHHNP(u)e IP(s,t 1,a1)���� HHHHInpresent VP(s,t 1,a1)��� HHHVopen NP(panel1)Npanel
.

step(a1), agent(a1,u), during(a1,t 1), present(t 1)postcondition(a1,configuration(panel1,state(open)))hearer(u), type(panel1,panel)Figure 5.25: Generation of Step 1 for Advanced, part 2
lexical items were added to the tree and the morphological processing that takes place (inparticular, the e and present \words" are erased).The generation instance for the beginner agent type is shown in Figure 5.27. It is thesame as for the advanced agent type, except the shared modal operator information reectsthe agent type. The start of the generation process proceeds the same as in the generationfor the advanced agents, through choosing the verb. However, the semantics of open doesnot satisfy the concreteness communicative goal, thus SPUD looks to add another lexicalitem. In this case, it chooses to adjoin a means clause to describe how to do the high-levelaction. The means clause (see Figure 5.10) adds the sub-action information needed tosatisfy the concreteness goal. After adjoining the means clause, the partial tree and itssemantics are as shown in Figure 5.28. The verb remove is added to the tree and the nounphrases are �lled in to �nish the tree, resulting in the tree and semantics in Figure 5.29.SPUD's output is shown in Figure 5.30; morphological processing changes remove into its102



Figure 5.26: Output: Step 1 for Advanced

gen = {name = { Step 1 for Beginner }private = { S $ }shared = { P2 (P2 present(t_1) -> $) }describe = { ds(s,t_1,a1) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a1) termination(a1) }}. Figure 5.27: Generation instance: Step 1 for Beginner
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DS(s,t 1,a1)
�������������

�
HHHHHHHHHHHHH

H
S(s,t 1,a1,u)������ HHHHHHNP(u)# IP(s,t 1,a1)������� HHHHHHHInpresent VP(s,t 1,a1)������ HHHHHHVP(s,t 1,a1)��� HHHVopen NP(panel1)# CVP(s,t 1 1,oa1)���� HHHHCompby VP(s,t 1 1,oa1)#

.

step(a1), agent(a1,u), during(a1,t 1), present(t 1)postcondition(a1,configuration(panel1,state(open)))subactions(a1,oa1), during(oa1,t 1 1), starts(t 1 1,t 1)Figure 5.28: Generation of Step 1 for Beginner, part 1
gerund form removing.The generation instance for Step 1 (see Figure 5.31) for novice agents includes addi-tional communicative goals, reecting the increased detail required in order for the agentsto be able to carry out the instruction. One type of communicative goal which has notbeen mentioned before is one which indicates the action's relations to other actions. In thiscase, the communicative goal nextAction(oa1,oa2) ensures that the agent will know theexistence and ordering of the sub-actions. The concrete and termination communicativegoals are included for actions at all levels, so that the generated instructions will providethe agent with enough detail to perform the action.104



DS(s,t 1,a1)
�������������

�
HHHHHHHHHHHHH

H
S(s,t 1,a1,u)������ HHHHHHNP(u)e IP(s,t 1,a1)������� HHHHHHHInpresent VP(s,t 1,a1)������ HHHHHHVP(s,t 1,a1)��� HHHVopen NP(panel1)Npanel

CVP(s,t 1 1,oa1)���� HHHHCompby VP(s,t 1 1,oa1)��� HHHVremove NP(screw1)Nscrew

.

step(a1), agent(a1,u), during(a1,t 1), present(t 1)postcondition(a1,configuration(panel1,state(open)))subactions(a1,oa1), during(oa1,t 1 1), starts(t 1 1,t 1)postcondition(oa1,configuration(screw1,location(awayFrom(hole1))))hearer(u), type(panel1,panel), type(screw1,screw)Figure 5.29: Generation of Step 1 for Beginner, part 2
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Figure 5.30: Output: Step 1 for Beginner
gen = {name = { Step 1 for Novice }private = { S $ }shared = { P1 (P1 present(t_1) -> $) }describe = { ds(s,t_1,a1) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a1) termination(a1)concrete(oa1) termination(oa1) nextAction(oa1,oa2)concrete(ua1) termination(ua1)concrete(oa2) termination(oa2) }}. Figure 5.31: Generation instance: Step 1 for Novice
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DS(s,t 1,a1)��������� HHHHHHHHHS(s,t 1,a1,u)
������������ HHHHHHHHHHHHCS(s,t 1,a1,u)����� HHHHHCompto S(s,t 1,a1,u)����� HHHHHNP(u)# IP(s,t 1,a1)���� HHHHInpresent VP(s,t 1,a1)��� HHHVopen NP(panel1)#

S(s,t 1 1,oa1,u)#
.

step(a1), agent(a1,u), during(a1,t 1), present(t 1)postcondition(a1,configuration(panel1,state(open)))subactions(a1,oa1), during(oa1,t 1 1), starts(t 1 1,t 1)Figure 5.32: Generation of Step 1 for Novice, part 1
The generation process starts the same as in the previous examples. However, the�rst lexical item chosen after the sentence tree substitution is the fronted purpose clausetree (see Figure 5.13) since its pragmatics hold, i.e. P1 complex(a1) can be proven. Theview of a1 as complex by the agent means that the high-level action needs to providea framework for interpreting the sub-actions, accomplished by the fronted purpose clauseconstruction. Once the adjunction is done, the verb open is chosen for the high-level action,now in the fronted purpose clause. At this point, the partial tree and its semantics areas shown in Figure 5.32. The simpleS tree is used at the substitution site in the main107



S(s,t 1,a1,u)�������� HHHHHHHHCS(s,t 1,a1,u)���� HHHHCompto S(s,t 1,a1,u)���� HHHHNP(u)# IP(s,t 1,a1)���� HHHHInpresent VP(s,t 1,a1)��� HHHVopen NP(panel1)#
S(s,t 1 1,oa1,u)������ HHHHHHNP(u)# IP(s,t 1 1,oa1)����� HHHHHInpresent VP(s,t 1 1,oa1)������ HHHHHHVP(s,t 1 1,oa1)��� HHHVremove NP(screw1)# VP(s,t 1 1,oa1)���� HHHHCompby VP(s,t 1 1 1,ua1)#step(a1), agent(a1,u), during(a1,t 1), present(t 1)postcondition(a1,configuration(panel1,state(open)))subactions(a1,oa1), during(oa1,t 1 1), starts(t 1 1,t 1)agent(oa1,u)postcondition(oa1,configuration(screw1,location(awayFrom(hole1))))subactions(oa1,ua1), during(ua1,t 1 1 1), starts(t 1 1 1,t 1 1)Figure 5.33: Generation of Step 1 for Novice, part 2

clause; the pragmatics of present(t 1 1) can be proven using the rules for reasoning aboutsubintervals given in Section 4.4.2. Next, the verb for the sub-action, remove, is chosenand added to the tree, but more detail than this is needed about the sub-action. A meansclause is adjoined to the verb phrase for the sub-action to indicate how to remove the screw,which a novice agent does not know how to do. After these additions, the partial tree andits semantics are as shown in Figure 5.33 (the discourse segment node of the tree is omitteddue to space constraints). Next, the second sub-action is added by adjoining another verbphrase using and then (see Figure 5.15). For the �rst sub-action, path direction does notneed to be added since the agent's knowledge includes the general knowledge that standardscrews are turned counterclockwise. However, termination information needs to be added108



to the action information in the means clause, in order to satisfy the termination(ua1)communicative goal. In this case, an until clause is adjoined to express the sub-action'spost-condition. Due to the size of the resulting tree, it is not shown in graphical format;instead, the SPUD output window is shown in Figure 5.34.As discussed and illustrated, the generation process produces di�erent instructionsfor the di�erent agent types using the same action information. The instructions varyin the amount and presentation of action information. Agent expertise knowledge, i.e.knowledge predicated with the U1, U2, and U3 modal operators, determines which piecesof action information need to be included in, or omitted from, an action description for aparticular agent type. This accounts for the varying level of detail seen in the generatedinstructions, summarized below ((a) for advanced, (b) for beginner, and (n) for novice):(24) (a) Open panel.(b) Open panel by removing screw.(n) To open panel, remove screw by turning screw until screw is loose and thenremove cover.Beyond the level of detail, however, the presentation style changes from agent type to agenttype, depending on how the agents view the action to be done. The instruction generatedfor novice agents uses a fronted purpose clause to address the novices' view that opening anobject is a complex action. In the discussion of the remaining steps of the task, the stylisticdi�erences between the instructions for the di�erent agent types will be highlighted, as willthe di�erences in the level of detail. Much of the generation of the instructions for thesecond and third steps follows the same general course as that discussed in this section,and thus the following discussions do not go into the same level of detail.5.4.3 Normalizing the pressureThe second step in restarting the pump is to normalize the pump's pressure, which istoo high. This step is much simpler than the previous one, involving only one basic sub-action. The action information for this step is shown in Figure 5.35. Notice that an explicitpurpose relation exists between the main action (a2) and its sub-action (na1); this means109



Figure 5.34: Output: Step 1 for Novice
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% Action: a2S step(a2).S during(a2, t_2).C result(a2, t_3).S meets(t_3, t_2).S agent(a2, u).S postcondition(a2, configuration(pressure1, state(normal))).S subactions(a2, na1).S nextAction(a2, a3).S prevAction(a2, a1).S parent(a2, a).% Action: na1S substep(na1,a2).S during(na1, t_2_1).S starts(t_2_1, t_2).S finishes(t_2_1, t_2).C result(na1, t_3).S agent(na1, u).S motion(na1, dial1, rotational).S pathDir(na1, cw).S postcondition(na1, configuration(gauge1, state(within(range1)))).S purpose(na1, generate(a2)).S nextAction(na1, nil).S prevAction(na1, nil).S parent(na1, a2).Figure 5.35: Action information for normalizing the pump's pressure
that the action of turning the dial clockwise until the pressure gauge registers normalpressure generates (directly accomplishes) the action of normalizing the pressure.The agent knowledge for this step is shown in Figure 5.36. Advanced agents knowthat an action involving normalizing the pump's pressure has a sub-action with the post-condition of having the pressure gauge be in the normal range. Beginner agents know thatgetting the gauge within the normal range involves turning the dial in its turnable direction.Since advanced agents should also be assumed to know this, it is predicated with the U2modal operator and therefore is inherited by the modal operator for advanced agents. In111



*A (postcondition(A,configuration(pressure1,state(normal))) ->U3 ?S(subactions(A,S), nextAction(S,nil),postcondition(S,configuration(gauge1,state(within(range1)))))).*A (postcondition(A,configuration(gauge1,state(within(range1)))) ->U2 motion(A, dial1, rotational)).*A *O (type(O,pressure), postcondition(A,configuration(O,state(normal)))-> P2 purpose(A)).*A *O (type(O,pressure), postcondition(A,configuration(O,state(normal)))-> P1 complex(A)).Figure 5.36: Agent knowledge for Step 2

Figure 5.37: Output: Step 2 for Advanced
terms of how agents view the action of normalizing pressure, beginner agents view it asbeing an action which serves as the purpose for doing other actions (P2 purpose(A)) andnovice agents view it as being a complex action (P1 complex(A)).The generation instance for advanced agents for Step 2 is the same as for Step 1, exceptt 1 is replaced by t 2 and a1 by a2. The generation process is also similar, as evidenced bythe SPUD output window shown in Figure 5.37. (The lexical entry for the verb normalizeis shown in Figure 5.38.)The generation instance for beginner agents is shown in Figure 5.39. It is similar to theone for Step 1, except for the communicative goals. In this case, the goals of concrete and112



word = f name = f normalize g...site = f vp(S,R,E) g...semantics = f during(E,R),postcondition(E, configuration(O, state(normal))) g...pragmatics = f abstractObj(O) gtrees = f transitiveVP(S,R,E,O) gg. Figure 5.38: Lexical entry for normalizegen = {name = { Step 2 for Beginner }private = { S $ }shared = { P2 (P2 present(t_2) -> $) }describe = { ds(s,t_2,a2) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a2) termination(a2)concrete(na1) termination(na1) }}. Figure 5.39: Generation instance: Step 2 for Beginner
termination are added for the sub-action na1 to ensure that it is described appropriately.The unique feature of the generation process is that the beginner agents' view of the mainaction as a purposive action guides SPUD to use the ds3 discourse segment tree (seeFigure 5.11) to put the sub-action in the main clause of the sentence. Then the non-fronted purpose clause (see Figure 5.12) must be used to express the purpose relation andthe action information for the main action. SPUD's output, shown in Figure 5.40, showsthe result of the generation process.The generation instance for novice agents is the same as for beginner agents, exceptfor the use of the P1 modal operator instead of P2. As in the generation of the Step 1instructions for the novice agents, the fronted purpose clause construction is used to reect113



Figure 5.40: Output: Step 2 for Beginner
word = f name = f clockwise g...decl = f beta(S,R,E) gsite = f vp(S,R,E) g...semantics = f pathDir(E, cw) g...trees = f bVPadv(S,R,E) gg. Tree entry: vp(S,R,E)��� HHHvp(S,R,E)� �Figure 5.41: Lexical entry for clockwise
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the novices' view of the main action as complex. The result of the generation process isshown in Figure 5.42. (The lexical entry for the adverb clockwise is shown in Figure 5.41.)Even though Step 2 is a simpler action than Step 1, the generated instructions againvary in terms of the amount of action information presented to di�erent agents as well asthe style of presentation:(25) (a) Normalize pressure.(b) Turn dial to normalize pressure.(n) To normalize pressure, turn dial clockwise until gauge is within normal range.One main point that the generation of Step 2 demonstrates is that SPUD's decision asto what will be the head of a construction (i.e. a high-level action versus a sub-action)depends on agent-speci�c features. Beginner agents' purpose view of the top-level actionproduces a sentence with a standard non-fronted purpose clause. Otherwise, the generationprocesses for the two steps are the same.5.4.4 Starting the pumpThe �nal step in restarting the pump, namely that of actually starting the pump, issimilar to Step 1 in terms of its action/sub-action structure (see Figure 5.18). The actioninformation is shown in Figure 5.43. The �rst sub-action, resetting the pump, has two sub-actions of its own: raising and holding the lever (see Figure 5.44). The second sub-actionin the step, like its counterpart in Step 1, is a leaf in the action tree. However, unlike inStep 1, it has an explicit purpose relation to the main action. This di�erence, along withthe di�erences in agent knowledge, results in instructions which di�er in form from thosein Step 1. The resulting instructions for Step 3 are:(26) (a) Start pump.(b) To start pump, reset pump and then press ON button.(n) Reset pump by moving lever to RESET position and then holding lever untilthe light is green. Then press ON button to start pump.115



Figure 5.42: Output: Step 2 for Novice
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% Action: a3S step(a3).S during(a3, t_3).C result(a3, t_4).S finishes(t_3, t).S agent(a3, u).S postcondition(a3, configuration(pump1, state(running))).S subactions(a3, sa1).S nextAction(a3, nil).S prevAction(a3, a2).S parent(a3, a).% Action: sa1S substep(sa1,a3).S during(sa1, t_3_1).S starts(t_3_1, t_3).C result(sa1, t_3_2).S agent(sa1, u).S postcondition(sa1, configuration(pump1, state(reset))).S subactions(sa1, ra1).S nextAction(sa1, sa2).S parent(sa1, a3).% Action: sa2S during(sa2, t_3_2).S meets(t_3_2, t_3_1).S finishes(t_3_2, t_3).C result(sa2, t_4).S agent(sa2, u).S force(sa2, button1).S magnitude(sa2, greater(resistance(button1))).S pathDir(sa2, inDir(button1)).S purpose(sa2, generate(a3)).S nextAction(sa2, nil).S prevAction(sa2, sa1).S parent(sa2, a3).Figure 5.43: Action information for starting the pump
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% Action: ra1S during(ra1, t_3_1_1).S starts(t_3_1_1, t_3_1).C result(ra1, t_3_1_2).S agent(ra1, u).S motion(ra1, lever1, translational).S pathEnd(ra1, at(resetPos1)).S nextAction(ra1, ra2).S prevAction(ra1, nil).S parent(ra1, sa1).% Action: ra2S during(ra2, t_3_1_2).S meets(t_3_1_2, t_3_1_1).S finishes(t_3_1_2, t_3_1).C result(ra2, t_3_2).S agent(ra2, u).S force(ra2, lever1).S magnitude(ra2, weight(lever1)).S pathDir(ra2, oppositeDir(gravity)).S postcondition(ra2, configuration(light1, color(green))).S nextAction(ra2, nil).S prevAction(ra2, ra1).S parent(ra2, sa1).Figure 5.44: Action information for resetting the pump

118



*A (postcondition(A, configuration(pump1, state(running))) ->U3 ?S?N(subactions(A,S),postcondition(S,configuration(pump1,state(reset))),nextAction(S,N), nextAction(N,nil),force(N,button1), magnitude(N,greater(resistance(button1))),pathDir(N,inDir(button1)))).*A (postcondition(A, configuration(pump1, state(reset))) ->U2 ?S?N(subactions(A,S),motion(S,lever1,translational), pathEnd(S,at(resetPos1)),nextAction(S,N), force(N,lever1), pathEnd(N,at(resetPos1)),pathDir(N,oppositeDir(gravity)), magnitude(N,weight(lever1)),postcondition(N,configuration(light1,color(green))))).*A (postcondition(A, configuration(pump1, state(running))) ->P2 complex(A)).*A (postcondition(A, configuration(pump1, state(running))) ->P1 elaborate(A)).Figure 5.45: Agent knowledge for Step 3
The agent knowledge for Step 3 is shown in Figure 5.45. Advanced agents know thatstarting the pump involves resetting the pump and then pressing the ON button. Beginneragents know that resetting the pump involves raising the control lever to the RESETposition and holding it until the status light turns green. As in the previous step, noviceagents do not have any experience with actions like the top-level action. However, noviceagents can be assumed to view such actions as elaborate. Beginner agents also have aparticular view of such actions, in this case as complex actions. Both of these views aredue to the fact that the main action has two full-edged sub-actions (i.e. they not inferablefrom the top-level action by beginner and novice agents).Many new verbs are needed for the generation of this step's instructions. These areshown in Figure 5.46.The generation instance and generation process are as expected for the advanced agenttype; the result is shown in Figure 5.47. The generation instances for beginners and119



word = f name = f start g...site = f vp(S,R,E) g...semantics = f during(E,R),postcondition(E,configuration(O,state(running))) g...pragmatics = f type(O,pump) gtrees = f transitiveVP(S,R,E,O) gg.word = f name = f move g...site = f vp(S,R,E) g...semantics = f during(E,R), motion(E,O,translational) g...pragmatics = f property(O, movable, true) gtrees = f transitiveVP(S,R,E,O) gg.word = f name = f hold g...site = f vp(S,R,E) g...semantics = f during(E,R), force(E,O),magnitude(E,weight(O)),pathDir(E,oppositeDir(gravity)) g...trees = f transitiveVP(S,R,E,O) gg.word = f name = f press g...site = f vp(S,R,E) g...semantics = f during(E,R), force(E,O),magnitude(E,greater(resistance(O))),pathDir(E,inDir(O)) g...trees = f transitiveVP(S,R,E,O) gg. Figure 5.46: Verb entries for Step 3
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Figure 5.47: Output: Step 3 for Advanced
novices are shown in Figure 5.48. The communicative goals again reect the detail neededin the instructions for the less experienced agents.20 In terms of generation, since beginneragents view the main action as complex, the fronted purpose clause construction is chosento emphasize the main action and allow the sub-actions to be expressed in the mainclause. The and then lexical item for conjoining verb phrases is chosen to add the actioninformation for the second sub-action. The result of the generation for beginner agents isshown in Figure 5.49.Finally, novice agents' view of the main action as elaborate guides SPUD to choose thediscourse segment tree with two substitution sites for sentences, the second one introducedby \Then" (see Figure 5.16). Each sub-action is described in its own sentence, allowingfor shorter sentences because each sub-action requires detailed description. The �rst sub-action is described by using a means clause to express how to accomplish it and and then toconjoin its two sub-actions. A purpose clause expressing the main action is adjoined to theverb phrase for the second sub-action, thus providing the necessary termination informationto satisfy the termination(sa2) communicative goal. The result of the generation isshown in Figure 5.50.20Due to peculiarities of interacting goals, the purpose goal in the generation instance for novices wasneeded instead of the concrete and termination goals for sa2.
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gen = {name = { Step 3 for Beginner }private = { S $ }shared = { P2 (P2 present(t_3) -> $) }describe = { ds(s,t_3,a3) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a3) termination(a3)concrete(sa1) termination(sa1) nextAction(sa1,sa2) }}.gen = {name = { Step 3 for Novice }private = { S $ }shared = { P1 (P1 present(t_3) -> $) }describe = { ds(s,t_3,a3) }pattern = { ds(S,R,E) }features = { () }communicate = { subactions(sa1,ra1) nextAction(sa1,sa2)concrete(ra1) termination(ra1) nextAction(ra1,ra2)concrete(ra2) termination(ra2)purpose(sa2,generate(a3)) }}. Figure 5.48: Generation instances: Step 3 for Beginner and Novice
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Figure 5.49: Output: Step 3 for Beginner
5.5 DiscussionThe agents' views and experiences are reected in the variety of form and detail in thegenerated instructions. SPUD makes such a variety attainable with little extra e�ortbeyond that required for generating only one instruction per action instance. Nearly allof the generated instructions described in this chapter have been produced by SPUDwith the report \derivation completed successfully" (see Figure 5.17). The less-than-successful report by SPUD for instructions which seem to be �ne is due to peculiarities inproving some communicative goals included in generation instances. Since the appropriateinstructions are generated, working out why they do not receive SPUD's stamp of approvalhas not been a top priority. As could be expected from the variety in complexity of thegenerated texts, computational times for the generation of the texts di�er considerably.The instructions for advanced agents, which are simple, generally take a couple of minutes,while the complex instructions for novice agents can take up to a half hour to generate.2121SPUD was run on a multi-user Sun server. Computation times include non-user (i.e. program) timefor system tasks. No detailed information about computation times was collected as this is not a focus of123



Figure 5.50: Output: Step 3 for Novice
124



Overall, the implementation in SPUD has been very successful.SPUD's generation of the example instructions has demonstrated its generation al-gorithm as well as how the domain, agent, and action information all come together toenable the generation of tailored, e�ective instructions. The implementation of the lan-guage model for SPUD has involved specifying lexical items and their syntax, semantics,and pragmatics. The lexical items range from individual words to discourse segments,giving SPUD the exibility to determine the structure of the generated text at all levels.By including agents' view of actions as part of the agent model, the pragmatics for lexicalitems can take account of the agent's view in deciding how to present a complex action.SPUD uses this pragmatic information when choosing lexical items to include in a descrip-tion. In this way, SPUD tailors the descriptions to the agent. Communicative goals tobe satis�ed by the generated text are included in the generation instances which start thegeneration process. In checking if the communicative goals are satis�ed, SPUD reasonsabout the agent's assumed knowledge and what information the current description pro-vides to the agent. Thus, by specifying communicative goals relating to the concretenessand termination of the actions being described, the instructions generated by SPUD aree�ective and e�cient.In the course of implementing the language model, several issues arose which have beenincorporated into this chapter. First of all, working with a action/sub-action structure fromthe top down means that syntactic trees have to be made such that the top-level actioncan be moved to a subordinate clause if needed (e.g. to emphasize a sub-action by puttingit in the main clause). These are not the types of trees that are naturally intuitive todesign but they are needed in addition to traditional trees and lexical entries which focuson the action described in the main clause as the main action to be described. Thus, thetwo purpose clause trees (Figures 5.12 and 5.13) move the top-level action from the mainclause into a subordinate purpose clause.Second, the implementation of stylistic preferences came from the need to \get around"SPUD's greedy algorithm which picks the simplest lexical entry, given the same semantics.Since instructions need to be described di�erently depending on agent expertise, thesethe dissertation. 125



preferences (and the need to have them be private to each agent type) precipitated theneed for additional modal operators to serve as private agent knowledge, i.e. knowledgethat is not inherited through the experience level modal operators (U1, etc.). Using thestylistic preferences, implemented in the form of agents' views of actions, complex lexicalitems which would not otherwise be chosen by SPUD are now used.Lastly, the communicative goals included in each action instance had to be di�erent,reecting the di�erent levels of detail needed by di�erent agent types. The problem withspecifying a uniform set of communicative goals is that SPUD does not have a notion ofpartially satisfying a goal or of subgoaling. That is, each word has to completely satisfya communicative goal in order to be considered [Stone, personal communication]. Thus, arule such as*A C (concrete(A), termination(A) -> howToDo(A)).and the communicative goal of howToDo(A) cannot be used. Instead, the two separateconjuncts of the howToDo(A) rule, namely concrete(A) and termination(A) must beused as communicative goals. In addition, rules cannot be used to go down more than onelevel in the action/sub-action tree. For instance, rules such as*A *S C (subactions(A,S), concreteAll(S) -> concrete(A)).C concreteAll(nil).*A *N C (concrete(A), nextAction(A,N), concreteAll(N) -> concreteAll(A)).are not e�ective in having the communicative goal concrete(a1) ensure that the re-sulting description will have the necessary concreteness information for a1's sub-actions.Therefore, separate communicative goals for each sub-action must be stated in generationinstances.Modi�cations to SPUD's algorithm which might make implementing a language modeleasier include changing its ranking method of possible additions to a tree and/or allowingmultiple possibilities to be left open. Changing the ranking method could be used to givemore weight to trees which provide more opportunities to include useful information lateron. Leaving multiple options open when choosing which lexical item to add next could givethe necessary exibility when handling constructions with similar semantics. These and126



other possible modi�cations to SPUD are described as part of the conclusions and furtherwork in Chapter 7. However, before concluding this dissertation, I present some relatedwork in the area of Natural Language Generation and compare it to this implementationusing SPUD.
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Chapter 6
Related Work
Since my dissertation work involves a system for the generation of natural language in-structions, comparing it to other such systems is the best way to distinguish its strengthsand weaknesses. Thus, comparisons of my approach using SPUD and that of other sys-tems used for generating instructions given at the beginning of this chapter. However,other generation approaches which do not directly address the generation of instructionsare also discussed later. Even though direct comparisons cannot be made, either becausethe approach does not address instructions or because it is not a full system (or both),comparisons with these approaches can also show the strengths and weaknesses of myapproach.6.1 Instruction Generation SystemsFew of the instruction generation systems discussed below address the e�ectiveness ofinstructions; none of them address termination information. Few of the generation ap-proaches below address the use of hearer knowledge, especially the level of expertise of thehearer, and few include the ability to reason about the world and the e�ects of instruc-tions on the hearer. However, many address the importance of having a language-neutraldomain/action representation and some incorporate incrementality.1 All of these issues1Although not addressed in detail before, incrementality reects a system's ability to consider and adaptto the information provided by partial descriptions.128



| e�ectiveness, termination, hearer knowledge, reasoning, language-neutral domain rep-resentation, and incrementality | are the main points of discussion below. As such, eachsystem is given a rating to indicate the degree to which they address each of these issues.A + that means the issue is addressed, a ~ means that the issue is addressed indirectly,and a - means that the issue is not addressed at all in the considered literature for thesystem. (A ? is used when no determination either way could be made.) The order of theissues is: e�ectiveness (termination), hearer knowledge (expertise levels), reasoning ability,language-neutrality, and incrementality. The issues in parentheses will also be given a rat-ing when their associated issue has a + or ~ rating. My approach to instruction generationusing SPUD would thus get a [+(+),+(+),+,+,+] rating.6.1.1 COMET, 1990; rating:[-,-,~,+,+]COMET [McKeown et al., 1990] uses Functional Uni�cation Formalism (FUF), a declar-ative and uniform representation, for domain and lexicon representation and uni�cationfor lexical choice and generation of multi-media explanations. Uni�cation incrementallyenriches the logical form determined by content planning until all aspects of the utteranceare considered, giving COMET the ability to produce e�cient texts. COMET can applysome reasoning, in the form of calling arbitrary code, in its generation process. However,it does not consider hearer knowledge nor the e�ectiveness of the generated text. (See[McKeown et al., 1993], described in 6.2, for an extension of COMET's capabilities.)6.1.2 EPICURE, 1992; rating:[~,~,-,+,+]EPICURE [Dale, 1992] generates recipe instructions from a declarative feature-structurerepresentation. Although the work focuses mainly on generating referring expressions, in-cluding determining when particular anaphoric forms (pronouns, reduced noun phrases,etc.) are appropriate, the approach to generation is part of the inspiration for the SPUDgenerator. A series of mapping algorithms transform semantic content into surface struc-ture, making EPICURE incremental. It considers the ability of the hearer to understandwhich object a referring expression refers to in the domain, but it has a simple view of129



actions, reducing the complexity of actions found in the real world to state-change seman-tics. It does not address the ability to reason about hearer knowledge, the world, nor thee�ectiveness of the instructions beyond being able to identify the intended objects.6.1.3 TECHDOC, 1994; rating:[~,~,+,+,-]TECHDOC [R�osner and Stede, 1994] generates descriptions and instructions needed formaintenance activities. The description logic LOOM, supports some reasoning, is therepresentation for text structuring information as well as domain knowledge, which islanguage-neutral. Penman, a systemic-functional sentence-level generator, is used for sen-tence planning and lexical choice. Penman consists of system networks which encodevarious semantic and syntactic features and associated realization statements which indi-cate that particular words or constructions are to be used. Penman does not seem to beincremental in its generation, as a pass through the networks indicates the surface formfeatures which must be then reconciled with the grammar. Since TECHDOC simulates theevents it is to describe and updates the world model accordingly, the system is sensitive tothe state of the world, i.e. only relevant information is provided in instructions. However,it does not address hearer knowledge nor the e�ectiveness of the instructions, beyond beingappropriate to the state of the world.6.1.4 IDAS, 1995; rating:[~,+(+),~,-,?]IDAS [Reiter et al., 1995] generates on-line technical documentation from domain knowl-edge bases developed for design purposes (e.g. computer-aided design output). The actionrepresentation for \deep" generation is case frames (roughly, predicate-argument struc-tures), which by their very nature have a language bias. However, in order to lower costsin terms of development time, it uses a hybrid action representation in the form of cannedtext with embedded knowledge-base references and case frames with textual case �llers.In this way, domain developers, who are not experts in knowledge representation, caneasily specify the language that goes along with the actions in the domain. A descrip-tion logic representation is used for all information, including the grammar and lexicon.Reasoning thus is possible but limited because the description logic is a KL-ONE type130



object classi�cation system, which only supports reasoning about objects and their placein the classi�cation hierarchy. SPL (sentence planning language) expressions are built fromcontent-determination output which is sensitive to user expertise.Lexical choice follows [Reiter, 1991], which is an algorithm for choosing appropriatenoun phrases, and the generation is sensitive to the user model, which is provided as partof the input. In [Reiter, 1991], nouns are chosen by searching for lexical units that areknown to the user, that truthfully describe the object, that convey su�cient informationto satisfy communicative goals, and that are maximal under a lexical preference function.[Reiter, 1991] separates what the system knows from what it wishes to communicate tothe hearer. The algorithm relies on representing human mental categories, since the lexicalknowledge for individual users includes the lexicon and mental categories. (A one-to-onemapping between concepts and words is not necessarily assumed to exist in the mind of thehearer.) Communicative goals, such as identifying an object, are analyzed by a separatecomponent and given to the lexical choice algorithm as attributes to express. Lexicalpreference is based on a bias towards basic-level and other preferred lexical units following[Rosch, 1978].One of the basic questions that can be asked of the system is how to perform a speci�caction; other questions involve describing objects and relationships between objects inthe domain. Other than considering user expertise in content-determination and lexicalchoice, the issue of the e�ectiveness of the instructions provided in response to the \howto perform an action" questions is not addressed.6.1.5 IMAGENE, 1995; rating:[~(~),-,~,-,?][Vander Linden and Martin, 1995] uses a system network and sentence-building componenton top of Penman (see Section 6.1.3) to generate technical documentation. The focus ofthe generation is on the realization of purpose expressions in instructions [Vander Linden,1994]. Lexical choice (in this case, determining the grammatical form of purpose relations)is done by system networks. The system networks, which encode decisions derived froma corpus analysis of instruction manuals, make choices ranging in scope from discourse tosentences and phrases. The action representation is in the description logic LOOM and131



therefore some reasoning can be done by the system. However, the action representationincludes some lexical information and therefore is not language-neutral. Contextual fac-tors include interpersonal as well as discourse factors; however, hearer knowledge is notconsidered. Since the system is devoted to the realization of appropriate expressions ofpurpose, the e�ectiveness of the generated instructions is addressed indirectly. As shownin my approach using SPUD, purpose expressions are often used to convey information,including termination, needed for performing actions.6.1.6 GhostWriter, 1996; rating:[-,-,-,~,?]GhostWriter [Merchant et al., 1996] uses a knowledge-based model of plans and actionsin language-neutral form as basis for the semi-automatic generation of instructions. Anexplicit �ne-grained action representation is used, making it mostly language-independent.However, actions can have a linguistically-oriented representation associated with them.In addition, there are concept-lexeme mapping structures in the lexicon. Action schemasare used for building a plan, which then can be used as input to the generator. Theauthor can manipulate the plan, have the system generate instructions for the plan, andthen post-edit the instructions by having the system re-generate parts of the instructions.Hearer knowledge is not addressed, nor is the e�ectiveness of the generated instructions,beyond the author's intervention by post-editing.6.2 Other approaches in Natural Language GenerationBelow I describe other approaches in NLG which are either methods for generating in-structions that are not part of complete systems or methods for generating other types oftexts which are related to instructions or which employ a user model. I only note whatthe approaches do since these are not directly comparable to my implementation.6.2.1 Paris, 1988[Paris, 1988] describes TAILOR, a question-answering system in the domain of complexpatented devices. The goal of describing a device is to help the user construct a mental132



functional model of it. The focus is on the content of the description, not its phrasing.Two ways of describing objects were found: one centered around subparts of the objectsand the other around the processes which the objects can undergo. Which descriptionstrategy to use depends on the user's domain knowledge, since domain knowledge aboutspeci�c objects or basic underlying concepts can a�ect an object's description. Users mayhave global expertise, in the form of known basic concepts, as well as local expertise,in the form of known objects. The description strategies can be mixed, based on theuser's knowledge, by switching from one to the other at decision points in the AugmentedTransition Networks which determine the content to be realized in the generated text. Inthis way, the kind of information, and not just the amount, in a generated text is a�ectedby the user's level of expertise in the domain.6.2.2 Mellish and Evans, 1989[Mellish and Evans, 1989] present a system which generates text from plans producedby the NONLIN planner, a non-linear planner, in the domains of cooking and mainte-nance activities. The plans which form the input to the generator are formally de�nedand domain-independent; they are non-linear action graphs and include the history of thehierarchical expansion of the nodes during planning. The generation process uses simple,well-understood, and restricted computational techniques such as recursive descent traver-sal. The plans are converted into \messages" in the content-planning phase; messagesare a linguistically-motivated intermediate representation from which linguistic structuresare built using rules. The resulting texts explain the actions to be performed and whythey have to be done that way. [Mellish and Evans, 1989] states that the texts lack thesmoothness of natural text due to a number of factors, including that the plans have arich structure but not the kind needed for interesting Natural Language, that the plansdo not reect \human" organization of actions, that the use of a restricted view of theworld which does not match up with natural semantics, and that the range of expressionsis restricted by the planner's representation.
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6.2.3 Bateman and Paris, 1989[Bateman and Paris, 1989] describe an approach designed to ensure that the generated textis appropriate for the intended audience. Since misphrased texts can be as ine�ective astexts which wrongly direct attention or rely on non-existent hearer knowledge, they pointout that beyond content determination, phrasing must be tailored to the speci�c user type.They introduce a second phase of planning to take the given content and determine howto control, as oppose to achieve, the appropriate phrasing. Registers, or speci�cations ofthe linguistic consequences of using language in particular situations, encode the fact thatsyntactic patterns and lexical features can be di�erent for di�erent user groups. Theyconstruct sets of terms to use for each user group, where the user groups are systemdevelopers, end users, and naive users of an expert system. Each group di�ers in its goals,expectations, and expertise with the expert system and the domain. The registers controlhow Sentence Planning Language (SPL) expressions are created and which grammaticalfeatures are allowable; in turn, the SPL expressions control how the generator, Nigel,produces text.6.2.4 Scott and de Souza, 1990[Scott and de Souza, 1990] rely on Rhetorical Structure Theory (RST) to structure sen-tences and overall text. (RST is a method for describing relationships, i.e. rhetoricalrelations, between spans of text.) They promote the use of accurate and unambiguousmarkers (e.g. cue words) of rhetorical relations to make sure the intended message getsacross to the hearer despite the lack of a good hearer model. They use heuristics to im-plement lexical choice with respect to choosing the most appropriate rhetorical relation tolexicalize for the given semantic content. Thus, they indirectly address the e�ectiveness ofthe generated text, but they do not address hearer knowledge since they assume the lackof a good hearer model.6.2.5 R�osner and Stede, 1992As part of the TECHDOC project (see 6.1.3), [R�osner and Stede, 1992] approached theproblem of analyzing naturally occurring instructions (from car manuals) using Rhetorical134



Structure Theory (RST). They point out several problems with using traditional RSTanalyses on instructions. First, the RST idea of a \minimal unit" is unclear when it comesto instructions; that is, is it a clause, a sentence, an entire instruction step? Second, morethan one rhetorical relation can often apply between two text spans in an instruction;traditional RST disallows this possibility. Finally, RST is incapable of representing thecomplex dependencies that appear in instructions. In attempting to overcome some of theseproblems, [R�osner and Stede, 1992] propose new RST relations for the genre of instructions:precondition, where the satellite proposition must be realized for the nucleus action to besuccessful when carried out; until, where the nucleus action is carried out as long as thesatellite, the \stopping condition", is not yet true (the stopping condition may result fromthe nucleus action); and step-sequence, which is for the sequence of instruction steps whichmake up a task (as opposed to a normal sequence relation which is for a sequence of actionsmaking up an instruction step). They encode domain knowledge and macrostructure\schematas" in LOOM and attach methods to schemata objects for building RST trees,which should be language-independent. They identify principles which make realizationsof the RST relations more acceptable and use them to choose the possible RST structurewith the highest preference after generating all such possible structures.6.2.6 McKeown, Robin, and Tanenblatt, 1993[McKeown et al., 1993] describes strategies in COMET (see above) to avoid using wordsthat are not known by the user. Since COMET is a multi-media explanation system, un-known words are frequently disambiguated by accompanying illustrations. However, whenan illustration is not su�cient, COMET uses four strategies to avoid using unknown words:selecting alternative words or phrases, rephrasing using conceptual de�nitions, rephrasingusing descriptive referring expressions, or using past discourse to construct a referring ex-pression. Lexical choice is part of the text generator and it depends on the user model,past discourse, syntactic form, and lexical constraints. The user model includes the user'sreading level, unknown words, and wording preferences. Lexicon entries associate seman-tic concepts with words used to realize them and the lexical choice algorithm determines135



grammatical form based on semantic structure. If none of the strategies work to disam-biguate an unknown word, the content planner must be reinvoked since di�erent levels ofknowledge (i.e. coarse- vs. �ne-grained) are represented separately in the knowledge base.6.2.7 Kosseim and Lapalme, 1995[Kosseim and Lapalme, 1995] address a restricted form of lexical choice, that of choosingwhich rhetorical relations to use when mapping a semantic representation to a rhetoricalstructure. Thus, they focus on the choice of linguistic constructions (e.g. those expressingrhetorical relations, such as means or purpose) rather than on the choice of individualwords (except those associated with the linguistic constructions). They use heuristics,derived from a corpus analysis, to determine the realization of two semantic carriers,e�ects and guidances, as rhetorical relations. In that they address e�ects and guidancesin instructions, they indirectly address the e�ectiveness of the instructions.6.2.8 Nicolov, Mellish, and Ritchie, 1996[Nicolov et al., 1996] exploit the declarative relationship between a non-hierarchical se-mantic representation, in the form of conceptual graphs, and a linguistically-motivatedsyntactic representation. Conceptual graphs are a language-neutral domain representa-tion. D-Trees, a variation of TAG, are used for the lexicon and grammar. Their approachto generation involves incrementally �nding mapping rules (semantics to syntax) to coveras much of the semantics in a conceptual graph as possible while adding as little extrainformation to the resulting text as possible. Their method allows the linguistic realiza-tion of a conceptual graph to be spread over multiple sentences. When the semanticsof paraphrases are the same, they employ syntactic/stylistic preferences to choose whichparaphrase to generate. In many ways, this approach is similar to that of SPUD, includingincrementality and the use of a TAG-based grammar. However, even though a language-neutral domain representation is used, it is unclear whether conceptual graphs could fullysupport the speci�cation of actions like those used in the example domain implementationin this dissertation. 136



6.3 DiscussionWhy use SPUD as opposed to one of the other systems discussed in this chapter? As shownby the ratings of the other systems, all of them fail to fully address certain issues that Ihave argued as being essential to generation of e�ective instructions. Beyond my speci�ccontributions with respect to the action representation and what action information isneeded for e�ective instructions, what distinguishes my approach is SPUD's strengths asa generation system.SPUD has a powerful reasoning system, based on an independently-motivated repre-sentation (modal First-Order Logic). Not only does this support language-independentreasoning about the domain, e.g. for planning or simulation purposes, it uses reasoningto determine the information (and its consequences) conveyed to the hearer by partialdescriptions. Such reasoning, combined with the close coupling of syntax and semanticsin its language representation, produces e�ective and e�cient texts, i.e. those that conveythe necessary information and only the necessary information. Since SPUD does sen-tence planning and syntactic realization at the same time, the overall generation processis exible and e�cient, responding to changes in domain and hearer knowledge with ease.Despite its strengths, however, I encountered a few problems with SPUD in the imple-mentation of the example domain (see Section 5.5). Therefore, in the concluding chapter, Isuggest how SPUD could be modi�ed in order to expedite implementation and generationof instructions, as well as other types of texts.
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Chapter 7
Conclusions and Further Work
In this dissertation, I have supported my claim that the generation of e�ective instructionsrelies on representing complete action information, ensuring that all necessary informationabout an action is available from its description, and taking into account what the heareris assumed to know. I have presented a corpus study of maintenance instructions whichshows how one particularly vital piece of information, action termination, is expressed. Ihave motivated an action representation based on insight gained about actions from thecorpus study as well as the representational needs of simulating agents carrying out similartasks. I have shown how knowledge about domains, actions, and agent expertise in thedomain can be represented and reasoned about by a modal �rst-order logic theorem-prover.Finally, I have brought all of this work together by using the Natural Language generatorSPUD to generate e�ective instructions for di�erent agent expertise levels.In each of the areas that this dissertation addresses, I have made contributions to thecurrent research while relying on previous work of other researchers. In this chapter, Isummarize these contributions and raise some issues for further work. Overall, I believethat this dissertation demonstrates the potential for a Natural Language Generation systemwhich produces e�ective instructions using an independently-motivated representation fordomains, actions, and agents as well as a linguistically-sound lexical representation.The results of the corpus study discussed in Chapter 3 shows that termination infor-mation is an important part of maintenance instructions. A third of the instructions inthe corpus have termination information supplied in some form other than the verb; the138



actions described in these instructions do not naturally have termination. The simple waysof expressing termination, such as verb arguments and prepositional phrases, dominate thecomplicated ways (with the exception of purpose clauses) which add additional clauses.Since purpose clauses can convey a variety of information, including purpose, manner, andtermination, using a purpose clause to convey multiple pieces of information is e�cient.Thus purpose clauses are used frequently even though they are syntactically complex. Ex-pressing termination using verb arguments is syntactically simple, e.g. raise the lever, butdetermining that particular verbs with particular arguments have termination informationis hard.1 Thus, in the interest of being able to implement the results of the corpus analysis,the syntactically complicated but semantically simple ways of expressing termination areanalyzed in more detail for inclusion in the implemented language model.In particular, the analysis demonstrates how and why prepositional phrases, purposeclauses, and until clauses are used to express termination, as summarized below.Prepositional phrases: The prevalence of actions involving motion in the corpus ofmaintenance instructions means that prepositional phrases are frequently neededto express path information, particularly path endpoints for the termination of themotion. Such prepositional phrases are semantically simple, simply adding the mo-tion's endpoint to the action information; in addition, they are syntactically simple,requiring only an additional phrase (as opposed to a clause).Purpose clauses: As mentioned before, purpose clauses can provide a variety of actioninformation. The corpus analysis includesmeans (\by") clauses with purpose clauses,since means clauses are express the same action/sub-action type of relation but in adi�erent syntactic order. Means clauses are used frequently since they express theaction(s) used to accomplish another action.Although not noted explicitly in the corpus coding, two forms of the \to" purposeclause, fronted and non-fronted, appear in the corpus. Fronted purpose clauses, atthe beginning of a sentence, provide a framework for describing and interpreting theactions in the sentence's main clause which accomplish the purpose. Non-fronted1At the very least, reasoning about the interaction of action properties and arbitrary properties of thedomain would be required. 139



purpose clauses, on the other hand, simply express a local purpose role relating anaction directly to its purpose. This type of purpose clause can be used when boththe purpose and its accomplishing action are expressed simply.Purpose clauses are syntactically complicated, adding another clause to a sentence.However, they provide so much action information that using them in a descriptionreduces the e�ort in describing and interpreting the action description. Thus, purposeclauses are used frequently in the corpus of maintenance instructions and are worththe e�ort to include in the language model.Until clauses: Finally, although until clauses do not appear frequently in the corpus,they are one of the simplest ways of adding termination information to an actiondescription. By expressing a termination condition which indicates when to stopperforming an action, until clauses provide explicit termination. However, since thisis all they provide, with no other indication of how the termination information isrelated to the performance of the action, they require additional work on the part ofthe hearer to interpret. Therefore, this relatively simple way of providing terminationinformation is infrequent in the corpus but is included in the language model becauseof its semantic simplicity.Much more work needs to be done to understand all of the ways in which terminationinformation is expressed. Verb arguments, free adjuncts, expressions of manner, as wellas non-lexical sources of termination, all have to be explored in terms of their capacityto express termination. The corpus study presented in this dissertation is a step in theright direction, in addition to providing the basis for the implemented language model andinsight into what kind of action information needs to be represented.While the action information needed by Natural Language instructions can motivatean action representation, having an action representation which can be used easily inother applications, such as planning or simulation, ensures that it is well-motivated andindependent of any theory of language. A Natural Language Generation system whichuses such a representation is more likely to succeed since without a language-neutral actionrepresentation, a separate step would be needed to translate the source action information140



(e.g. from a planning system) into the NLG system's action representation. To avoid thisadditional step and to simplify the generation process, the action representation shouldsupply the primitives for lexical representation as well as non-linguistic applications. Byadopting an action representation which is exible and general enough to support bothtypes of representational needs, the need to develop and maintain disparate representationsdisappears.In Chapter 4, I presented an action representation (PAR) meant to be language-neutraland universal, developed with researchers in both the simulation of virtual humans andthe semantics of Natural Language. The requirements for its structure come from the needto represent all aspects of actions which are vital to their performance. This makes PARan ideal representation for the generation of e�ective instructions, since all the necessaryaction information is represented. By translating PAR from its simple feature-structureimplementation to a �rst-order logic implementation, rules can be used to formalize rea-soning about actions. In the implementation, rules formalize the ways in which termi-nation information is derived from an action's speci�cation. In addition, rules about theconcreteness, or performability, of actions formalize reasoning required to ensure that anaction's speci�cation is adequate for its performance. In this way, reasoning about actioninformation has been formalized in a language-independent manner. While PAR and itsimplementation in �rst-order logic have proven suitable for the implementation presentedin this dissertation, it would bene�t from a more sophisticated action semantics, closer tothe dynamic semantics and tripartite structure discussed in Section 2.1. Changing PARto reect this more formal treatment of actions would be a signi�cant contribution in thearea of action representation and reasoning and is a topic for further work.Taking advantage of the representational and reasoning power of modal �rst-order logic,used by SPUD as its knowledge representation language, knowledge about agent expertisehas been encoded and provided to SPUD as described in Chapter 4. Modal operatorsare used to predicate knowledge assumed to be known by certain types of agents and toformalize the inheritance of knowledge, reecting the accumulation of agent expertise withexperience. Three types of agents are implemented: novice, beginner, and advanced. Eachhas its own knowledge of the domain, in addition to inheriting knowledge from the agent141



type below it. In this way, agent models are built and given to SPUD to use in reasoningabout the best way to describe actions to particular agents.In addition to domain, action, and agent knowledge, a language model has been imple-mented for use by SPUD as described in Chapter 5. Using the same predicates as in thedomain, action, and agent representations, linguistic constructions have been encoded foruse in describing the maintenance activities considered in this dissertation. These includeentries for discourse segment structures, sentence structures, verbs, prepositional phrases,purpose clauses, and until clauses. Some of these entries are not linguistically intuitive,since they are designed for descriptions which start with higher-level actions and need to berearranged to emphasize lower-level ones. The pragmatics for these entries indicate whenthey are appropriate to use, so that SPUD can make intelligent decisions when choosinglexical items to add to a description.However, in order for SPUD to make the right decisions when choosing between seman-tically similar constructions, more information must be provided. In this implementation,knowledge about how agents are assumed to view certain kinds of actions is provided toSPUD (Section 5.2.1). These views are implemented as knowledge predicated with private,non-inherited modal operators; such knowledge is then used in the pragmatics of syntacticconstructions. With this guidance, SPUD chooses the most appropriate constructions de-spite the fact that they might otherwise be overlooked in the generation process. This typeof guidance is essential given the way in which SPUD generates text. The implementationof the stylistic preferences came late in the research process and further work would re�neand formalize their use.This implementation has used SPUD as the Natural Language generator which pro-duces e�ective instructions when given action information and rules about action termina-tion and concreteness, the syntax and semantics of linguistics constructions derived fromthe corpus analysis, and the knowledge that agents are assumed to have. In many areasit exceeded my expectations in what it could do, but in some it fell short. In terms ofevaluating SPUD's generation of instructions, I consider whether e�ective instructions,with the form and level of detail appropriate for the particular agent, are generated to be
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the primary criteria. Secondary criteria include SPUD's status report for the �nal gener-ated text and the computational time required for the generation. Using these evaluationcriteria, SPUD performed very well.In terms of scalability of the implementation, what is most impressive is the relativeease with which complex syntax and semantics could be encoded and used. New lexicalitems and syntactic constructions could be added with little e�ort in order to implementnew constructions. In this way, more types of instructions could be included in the imple-mentation. Similarly impressive is the power of SPUD's theorem-prover, used for reasoningabout the e�ects of using particular linguistic constructions on the hearer's knowledge. Therichness of the domain representation enables the formalization of agent expertise levelsas well as reasoning rules about action termination and concreteness, thus enabling thereasoning about an instruction's e�ectiveness. One issue that might a�ect scalability iscomputational time, since the more facts and rules that make up the domain model, themore time the theorem-prover could require to reason about the domain. Careful attentionto the encoding of rules could partially alleviate this potential problem. The generalityand power of SPUD's knowledge representation (modal First-Order Logic) lends itself wellto increasing the complexity of the implemented domain or modeling a new domain. Suchreasoning power gives SPUD the exibility to generate di�erent instructions based on agentexpertise for the same action.A problem arose in implementing the example domain and the corresponding instruc-tions. Since SPUD considers the addition of only one lexical item at a time, any rules usedto reason about the addition of lexical items can in practice only justify one lexical itemat a time. A rule such as*A C (concrete(A), termination(A) -> howToDo(A)).cannot be used to ensure both the concreteness of an action's speci�cation and the inclusionof termination information (as de�ned in Sections 4.3.2 and 4.3.3). Such a rule wouldrequire the addition of multiple lexical items' semantics to satisfy it. Since no singlelexical item's semantics satis�es this rule, it could not be used to justify the addition of theappropriate multiple lexical items. Complex communicative goals, such as howToDo(A) asde�ned above, cannot be used in generation instances because of this property of SPUD.143



Multiple communicative goals are thus required in generation instances, unpacking theinformation so that SPUD can use it to generate the appropriate instructions.Complex communicative goals, which simplify the speci�cation of generation instancesbut need multiple lexical items to satisfy, suggest opportunities for improving or extendingthe way SPUD works. One possibility is to implement dynamic communicative goals, i.e.goals that can be posted on the y when reasoning about other goals. In this way, themultiple communicative goals needed to provide the correct generation behavior would notneed to be speci�ed in advance. Another way to achieve this would be to add a content-planning component to SPUD, since communicative goals form part of the speci�cation ofthe content. SPUD was not designed to plan the content of the generated text [MatthewStone, personal communication] and so generation instances, used to tell SPUD whatcontent to convey, are meant to come from another, hopefully automated, component ofa Natural Language Generation system. Finally, a less drastic but more fundamentalchange would be to modify the search algorithm that SPUD employs. SPUD currentlyuses a greedy search algorithm which chooses the single best lexical item to add to thecurrent tree. Algorithms such as beam search, which explore multiple paths (in this case,sequences of tree operations) simultaneously, could be used to give SPUD the ability tolook ahead for combinations of lexical items that would satisfy a complex communicativegoal. Any of these modi�cations could solve the problem of complex communicative goalsbut implementing them would require much further work.In the implementation described in this dissertation, I circumvented the problem ofcomplex communicative goals by using multiple communicative goals in the generationinstances for the example instructions. Using this hand-constructed content, which couldeventually come from an automated content-planner or dynamically-posted communicativegoals, I have shown how SPUD can be used to generate e�ective instructions, sensitive tothe inclusion of action termination and other information necessary for action performance.I have also shown how SPUD can take an agent model, indicating an agent's expertise withthe domain, and tailor the generated instructions to the agent, ensuring that the instruc-tions are e�ective for that agent. In conclusion, this dissertation has demonstrated that
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e�ective instructions can be generated when the right action information, agent informa-tion, and language information are brought together and reasoned about in a NaturalLanguage generator which, most essentially, considers the e�ect of every word that itincludes in a description.
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Appendix ASPUD �les
These are the full SPUD input �les for this implementation.A.1 Lexical items%% Discourse segment entries% Normalword = {name = { \. }basic = { true }decl = { alpha(S,R,E) }site = { ds(S,R,E) }match = { () }semantics = { step(E), during(E,R) }presupposition = { true }pragmatics = { true }trees = { ds1(S,R,E) }}.% Multi-sentenceword = {name = { \. Then }basic = { true }decl = { alpha(S,R,E,R1,E1,R2,E2) }site = { ds(S,R,E) }match = { () }semantics = { step(E), during(E,R), substep(E1,E), nextAction(E1,E2),during(E1,R1), during(E2,R2) }presupposition = { true }pragmatics = { elaborate(E) }trees = { ds2(S,R,E,R1,E1,R2,E2) }}.% Purposiveword = { 152



name = { \. }basic = { true }decl = { alpha(S,T,P,R,E) }site = { ds(S,R,E) }match = { () }semantics = { step(E), during(E,R), substep(P,E), during(P,T) }presupposition = { true }pragmatics = { purpose(E) }trees = { ds3(S,T,P,R,E) }}.%% Sentence entries% Present tense actionword = {name = { present }basic = { true }decl = { alpha(S,R,E,A) }site = { s(S,R,E,A) }match = { () }semantics = { during(E,R), agent(E,A) }presupposition = { true }pragmatics = { present(R) }trees = { simpleS(S,R,E,A) }}.% Present tense stateword = {name = { present }basic = { true }decl = { alpha(S,R,configuration(O,P)) }site = { s(S,R,configuration(O,P)) }match = { () }semantics = { configuration(R,O,P) }presupposition = { true }pragmatics = { true }trees = { predS(S,R,configuration(O,P)) }}.%% Verbsword = {name = { open }basic = { true }decl = { alpha(S,R,E,O) }site = { vp(S,R,E) }match = { () }semantics = { during(E,R),postcondition(E, configuration(O, state(open))) }presupposition = { configuration(R, O, state(closed)) }pragmatics = { true } 153



trees = { transitiveVP(S,R,E,O) }}.word = {name = { remove }basic = { true }decl = { alpha(S,R,E,O) }site = { vp(S,R,E) }match = { () }semantics = { during(E,R),?L?X(configuration(R, O, location(L)), locObj(L,X),postcondition(E,configuration(O,location(awayFrom(X))))) }presupposition = { true }pragmatics = { property(O, movable, true) }trees = { transitiveVP(S,R,E,O) }}.word = {name = { move }basic = { true }decl = { alpha(S,R,E,O) }site = { vp(S,R,E) }match = { () }semantics = { during(E,R), motion(E, O, translational) }presupposition = { true }pragmatics = { property(O, movable, true) }trees = { transitiveVP(S,R,E,O) }}.word = {name = { turn }basic = { true }decl = { alpha(S,R,E,O) }site = { vp(S,R,E) }match = { () }semantics = { during(E,R), motion(E, O, rotational) }presupposition = { true }pragmatics = { property(O, turnable, true) }trees = { transitiveVP(S,R,E,O) }}.word = {name = { press }basic = { true }decl = { alpha(S,R,E,O) }site = { vp(S,R,E) }match = { () }semantics = { during(E,R), force(E,O), pathDir(E,inDir(O)),magnitude(E,greater(resistance(O))) }presupposition = { true }pragmatics = { true } 154



trees = { transitiveVP(S,R,E,O) }}.word = {name = { hold }basic = { true }decl = { alpha(S,R,E,O) }site = { vp(S,R,E) }match = { () }semantics = { during(E,R), force(E,O), magnitude(E,weight(O)),pathDir(E,oppositeDir(gravity)) }presupposition = { true }pragmatics = { true }trees = { transitiveVP(S,R,E,O) }}.word = {name = { normalize }basic = { true }decl = { alpha(S,R,E,O) }site = { vp(S,R,E) }match = { () }semantics = { during(E,R),postcondition(E, configuration(O, state(normal))) }presupposition = { true }pragmatics = { abstractObj(O) }trees = { transitiveVP(S,R,E,O) }}.word = {name = { start }basic = { true }decl = { alpha(S,R,E,O) }site = { vp(S,R,E) }match = { () }semantics = { during(E,R),postcondition(E, configuration(O, state(running))) }presupposition = { true }pragmatics = { type(O, pump) }trees = { transitiveVP(S,R,E,O) }}.word = {name = { reset }basic = { true }decl = { alpha(S,R,E,O) }site = { vp(S,R,E) }match = { () }semantics = { during(E,R),postcondition(E, configuration(O, state(reset))) }presupposition = { true } 155



pragmatics = { true }trees = { transitiveVP(S,R,E,O) }}.%% Prepositionsword = {name = { to }basic = { true }decl = { beta(S,R,E,P,O) }site = { vp(S,R,E) }match = { () }semantics = { pathEnd(E,P), locObj(P,O) }presupposition = { true }pragmatics = { true }trees = { bVPpp(S,R,E,P,O) }}.word = {name = { within }basic = { true }decl = { alpha(R,O,P,I,L) }site = { pred(R,O,P) }match = { () }semantics = { configuration(R, O, state(within(L))) }presupposition = { true }pragmatics = { true }trees = { pp(R,O,P,within,L) }}.%% Adverbsword = {name = { counterclockwise }basic = { true }decl = { beta(S,R,E) }site = { vp(S,R,E) }match = { () }semantics = { pathDir(E, ccw) }presupposition = { true }pragmatics = { true }trees = { bVPadv(S,R,E) }}.word = {name = { clockwise }basic = { true }decl = { beta(S,R,E) }site = { vp(S,R,E) }match = { () }semantics = { pathDir(E, cw) } 156



presupposition = { true }pragmatics = { true }trees = { bVPadv(S,R,E) }}.%% Nounsword = {name = { pump }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { physicalObj(X), type(X, pump) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.word = {name = { panel }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { physicalObj(X), type(X, panel) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.word = {name = { pressure }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { abstractObj(X), type(X, pressure) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.word = {name = { range }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { abstractObj(X), type(X, range) }presupposition = { true } 157



pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.word = {name = { position }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { abstractObj(X), type(X, position) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.word = {name = { dial }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { physicalObj(X), type(X, dial) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.word = {name = { gauge }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { physicalObj(X), type(X, gauge) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.word = {name = { light }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { physicalObj(X), type(X, light) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}. 158



word = {name = { cover }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { physicalObj(X), type(X, cover) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.word = {name = { screw }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { physicalObj(X), type(X, screw) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.word = {name = { lever }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { physicalObj(X), type(X, lever) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.word = {name = { button }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (number singular; person third; gender neuter) }semantics = { physicalObj(X), type(X, button) }presupposition = { true }pragmatics = { true }trees = { aTheNP(X), aANP(X) }}.%% Adjectives/labels 159



word = {name = { normal }basic = { true }decl = { beta(O) }site = { n(O) }match = { () }semantics = { property(O, label, normal) }presupposition = { true }pragmatics = { true }trees = { bAdjN(O) }}.word = {name = { status }basic = { true }decl = { beta(O) }site = { n(O) }match = { () }semantics = { property(O, label, status) }presupposition = { true }pragmatics = { true }trees = { bAdjN(O) }}.word = {name = { RESET }basic = { true }decl = { beta(O) }site = { n(O) }match = { () }semantics = { property(O, label, reset) }presupposition = { true }pragmatics = { true }trees = { bAdjN(O) }}.word = {name = { ON }basic = { true }decl = { beta(O) }site = { n(O) }match = { () }semantics = { property(O, label, on) }presupposition = { true }pragmatics = { true }trees = { bAdjN(O) }}.word = {name = { loose }basic = { true } 160



decl = { alpha(R,O,P) }site = { pred(R,O,P) }match = { () }semantics = { configuration(R, O, state(loose)) }presupposition = { true }pragmatics = { true }trees = { adj(R,O,P) }}.word = {name = { green }basic = { true }decl = { alpha(R,O,P) }site = { pred(R,O,P) }match = { () }semantics = { configuration(R, O, color(green)) }presupposition = { true }pragmatics = { true }trees = { adj(R,O,P) }}.%% Purpose/means clauses% Fronted ``to'' purpose clauseword = {name = { to }basic = { true }decl = { beta(S,R,P,E,T,A) }site = { s(S,R,P,A) }match = { () }semantics = { subactions(P,E), agent(E,A), during(E,T), starts(T,R) }presupposition = { true }pragmatics = { command, complex(P) }trees = { compSfronted(S,R,P,E,T,A) }}.% Means ``by'' clauseword = {name = { by }basic = { true }decl = { beta(S,R,P,E,T) }site = { vp(S,R,P) }match = { () }semantics = { subactions(P,E), during(E,T), starts(T,R) }presupposition = { true }pragmatics = { true }trees = { VPcomp(S,R,P,E,T) }}.% Non-fronted ``to'' purpose clauseword = { 161



name = { to }basic = { true }decl = { beta(S,R,E,P,T) }site = { vp(S,R,E) }match = { () }semantics = { purpose(E, generate(P)), during(P,T) }presupposition = { true }pragmatics = { true }trees = { compVP(S,R,E,P,T) }}.%% Until clauseword = {name = { until }basic = { true }decl = { beta(S,R,E,P,T) }site = { vp(S,R,E) }match = { () }semantics = { postcondition(E, P) }presupposition = { result(E, T) }pragmatics = { true }trees = { VPcompS(S,R,E,P,T) }}.%% Miscellaneous% Empty subject for imperativeword = {name = { e }basic = { true }decl = { alpha(X) }site = { np(X) }match = { (case nom) }semantics = { hearer(X) }presupposition = { true }pragmatics = { command }trees = { epsilonNP(X) }}.% Conjunction of sequential actionsword = {name = { and then }basic = { true }decl = { beta(S,R,E,N,T) }site = { vp(S,R,E) }match = { () }semantics = { nextAction(E,N), during(N,T) }presupposition = { true }pragmatics = { true }trees = { bVPconjoin(S,R,E,N,T) } 162



}.A.2 Trees% Initial treesentry = {name = { ds1(S,R,E) }pragmatics = { true }tree = {node = {type = { ds(S,R,E) }top = { (cat ds) }bottom = { (cat ds) }kids = {subst = { type = { s(S,R,E,A) }top = { (cat s) } }anchor = { index = {1} } }}}}.entry = {name = { ds2(S,R,E,R1,E1,R2,E2) }pragmatics = { true }tree = {node = {type = { ds(S,R,E) }top = { (cat ds) }bottom = { (cat ds) }kids = {subst = { type = { s(S,R1,E1,A) }top = { (cat s) } }anchor = { index = {1} }anchor = { index = {2} }subst = { type = { s(S,R2,E2,A) }top = { (cat s) } }anchor = { index = {1} } }}}}.entry = {name = { ds3(S,T,P,R,E) }pragmatics = { true }tree = {node = {type = { ds(S,R,E) }top = { (cat ds) }bottom = { (cat ds) } 163



kids = {subst = { type = { s(S,T,P,A) }top = { (cat s) } }anchor = { index = {1} } }}}}.entry = {name = { simpleS(S,R,E,A) }pragmatics = { true }tree = {node = {type = { s(S,R,E,A) }top = { (cat s; tense present) }bottom = { (cat s; tense present) }kids = {subst = { type = { u:np(A) }top = { (cat np; number X; person Y; case nom) } }node = {type = { ip(S,R,E) }top = { (cat ip; form main; tense present; number X; person Y) }bottom = { (cat ip; form main; tense present; number X; person Y) }kids = {node = { type = { u:infl(S,R,E) }top = { (form main; tense present; number X; person Y) }bottom = {(form main; tense present; number X; person Y)}kids = { anchor = { index = {1} } }}subst = { type = { vp(S,R,E) }top = {(cat vp; tense present; form main;number X; person Y)}}}}}}}}.entry = {name = { predS(S,R,configuration(O,P)) }pragmatics = { true }tree = {node = {type = { s(S,R,configuration(O,P)) }top = { (cat s; tense present) }bottom = { (cat s; tense present) }kids = {subst = { type = { u:np(O) }top = { (cat np; number X; person Y; case nom) } }node = {type = { ip(S,R,P) }top = { (cat ip; tense present; form main; number X; person Y) }bottom = { (cat ip; tense present; form main; number X; person Y) }kids = {node = {type = { u:infl(S,R,P) }164



top = { (tense present; form main; number X; person Y) }bottom = { (tense present; form main; number X; person Y) }kids = { anchor = { index = {1}}}}node = { type = { vp(S,R,P) }top = { (cat vp; tense present; form main;number X; person Y) }bottom = { (cat vp; tense present; form main;number X; person Y) }kids = {node = { type = { v(be) }top = { (cat v; tense present; form main) }bottom = { (cat v; tense present; form main) }kids = { words = { words = {be} } } }subst = { type = {pred(R,O,P)}top = { (cat pred) } } } }} } } } } }.entry = {name = { transitiveVP(S,R,E,O) }pragmatics = { true }tree = {node = {type = { vp(S,R,E) }top = { (cat vp; form M; tense T; number X; person Y) }bottom = { (cat vp; form M; tense T; number X; person Y) }kids = {node = { type = { v(E) }top = { (cat v; form M; tense T; number X; person Y) }bottom = { (cat v; form M; tense T; number X; person Y) }kids = { anchor = { index = {1} } } }subst = { type = { u:np(O) }top = { (cat np) } } } } } }.entry = {name = { p:aTheNP(I) }pragmatics = { property(I, unique, true) }tree = {node = {type = { u:np(I) }top = { (cat np; number X; gender Y) }bottom = {(cat np; number X; gender Y) }kids = {words = { words = {the}}node = {type = { p:n(I) }top = {(cat n; number X; gender Y) }bottom = {(cat n; number X; gender Y) }kids = { anchor = { index = {1}}}}}}}}. 165



entry = {name = { aANP(I) }pragmatics = { true }tree = {node = {type = { u:np(I) }top = { (cat np; number X; gender Y) }bottom = {(cat np; number X; gender Y) }kids = {words = { words = {a}}node = {type = { n(I) }top = {(cat n; number X; gender Y) }bottom = {(cat n; number X; gender Y) }kids = { anchor = {index = {1}}}}}}}}.entry = {name = { adj(R,O,P) }pragmatics = { true }tree = {node = { type = { pred(R,O,P) }top = { (cat pred) }bottom = { (cat pred) }kids = {node = { type = { adj(P) }top = { (cat adj) }bottom = { (cat adj) }kids = { anchor = { index = {1} } } } } } } }.entry = {name = { pp(R,O,P,I,L) }pragmatics = { true }tree = {node = { type = { pred(R,O,P) }top = { (cat pred) }bottom = { (cat pred) }kids = {node = { type = { u:pp(P) }top = { (cat pp) }bottom = { (cat pp) }kids = {node = { type = { p(I) }top = { (cat p) }bottom = { (cat p) }kids = { anchor = { index = {1} } } }subst = { type = { u:np(L) }166



top = { (cat np) } } } } } } } }.entry = {name = { epsilonNP(A) }pragmatics = { hearer(A) }tree = {node = { type = { np(A) }top = { (cat np; case nom) }bottom = { (cat np; case nom) }kids = { anchor = { index = {1} } } } } }.% Auxiliary treesentry = {name = { compVP(S,R,E,P,T) }pragmatics = { true }tree = {node = { type = { vp(S,R,E) }top = { (cat vp; tense X; form M) }bottom = { (cat vp; tense X; form M) }kids = {foot = { type = { vp(S,R,E) }top = { (cat vp; tense X; form M) } }node = { type = { cvp(S,T,P) }top = { (cat cvp; tense X; form M) }bottom = { (cat cvp; tense X; form M) }kids = {node = { type = { comp }top = { (cat comp) }bottom = { (cat comp) }kids = { anchor = { index = {1} } } }subst = { type = { vp(S,T,P) }top = { (cat vp; tense X; form M) } } } } }}}}.entry = {name = { compSfronted(S,R,P,E,T,A) }pragmatics = { true }tree = {node = {type = { s(S,R,P,A) }top = { (cat s; tense X) }bottom = { (cat s; tense X) }kids = {node = { type = { cs(S,R,P,A) }top = { (cat cs; tense X) }bottom = { (cat cs; tense X) }kids = {node = { type = { comp }top = { (cat comp) }bottom = { (cat comp) }167



kids = { anchor = { index = {1} } } }foot = { type = { u:s(S,R,P,A) }top = { (cat s; tense X) } } } }words = { words = { \, } }subst = { type = { s(S,T,E,A) }top = { (cat s; tense X) } } } } } }.entry = {name = { VPcomp(S,R,P,E,T) }pragmatics = { true }tree = {node = { type = { vp(S,R,P) }top = { (cat vp; form M; tense X; number Y; person Z) }bottom = { (cat vp; form M; tense X; number Y; person Z) }kids = {foot = { type = { vp(S,R,P) }top = { (cat vp; form M; tense X; number Y; person Z) } }node = { type = { cvp(S,T,E) }top = { (cat cvp) }bottom = { (cat cvp) }kids = {node = { type = { comp }top = { (cat comp) }bottom = { (cat comp) }kids = { anchor = { index = {1} } } }subst = { type = { vp(S,T,E) }top = { (cat vp; form gerund) } } }} } } } }.entry = {name = { VPcompS(S,R,E,P,T) }pragmatics = { true }tree = {node = { type = { vp(S,R,E) }top = { (cat vp; tense X) }bottom = { (cat vp; tense X) }kids = {foot = { type = { vp(S,R,E) }top = { (cat vp; tense X) } }node = { type = { cs(S,T,P) }top = { (cat cs; tense X) }bottom = { (cat cs; tense X) }kids = {node = { type = { comp }top = { (cat comp) }bottom = { (cat comp) }kids = { anchor = { index = {1} } } }subst = { type = { s(S,T,P) }top = { (cat s; tense X) } } } } } }} }. 168



entry = {name = { bAdjN(O) }pragmatics = { true }tree = {node = { type = { n(O) }top = { (cat n) }bottom = { (cat n) }kids = {node = { type = { u:adj }top = { (cat adj) }bottom = { (cat adj) }kids = {anchor = { index = {1} } } }foot = { type = { n(O) }top = { (cat n) } } } } } }.entry = {name = { bVPpp(S,R,E,P,O) }pragmatics = {true}tree = {node = {type = { vp(S,R,E) }top = { (cat vp; form M; tense T) }bottom = { (cat vp; form M; tense T) }kids = {foot = { type = { vp(S,R,E) }top = { (cat vp; form M; tense T) } }node = { type = { pp(P) }top = { (cat pp) }bottom = { (cat pp) }kids = {node = { type = { p }top = { (cat p) }bottom = { (cat p) }kids = { anchor = { index = {1} } } }subst = { type = { u:np(O) }top = { (cat np; case obj) } } } }}}}}.entry = {name = { bVPadv(S,R,E) }pragmatics = { true }tree = {node = { type = { vp(S,R,E) }top = { (cat vp; form M; tense T) }bottom = { (cat vp; form M; tense T) }kids = {foot = { type = { vp(S,R,E) }top = { (cat vp; form M; tense T) } }node = { type = { adv } 169



top = { (cat adv) }bottom = { (cat adv) }kids = { anchor = { index = {1} } }}}}}}.entry = {name = { bVPconjoin(S,R,E,N,T) }pragmatics = { true }tree = {node = { type = { vp(S,R,E) }top = { (cat vp; form M; tense X) }bottom = { (cat vp; form M; tense X) }kids = {foot = { type = { vp(S,R,E) }top = { (cat vp; form M; tense X) } }anchor = { index = {1} }anchor = { index = {2} }subst = { type = { vp(S,T,N) }top = { (cat vp; form M; tense X) } } } } } }.A.3 Modal operatorsdim local.% G has information used to test specificitiesG S4.% C is overall general common knowledgeC S4 G.U1 S4 C.U2 S4 U1.U3 S4 U2.P1 S4 U1.P2 S4 U2.P3 S4 U3.S S4 P1 P2 P3.A.4 Domain knowledge% KNOWLEDGE FOR THE PANEL DOMAIN EXAMPLES170



G true.% Knowledge about the general situationC hearer(u).C domain(u,u).C command.C *P *R (subinterval(R,P) -> C(present(P) -> present(R))).*P *R C(starts(R,P) -> subinterval(R,P)).*P *R1 *R2 C(meets(R2,R1), subinterval(R1,P) -> subinterval(R2,P)).% Knowledge about objects% Rules for reasoning about objects*O C (type(O, standardScrew) -> type(O, screw)).*O C (type(O, controlPanel) -> type(O, panel)).*O C (type(O, standardScrewHole) -> type(O, hole)).*O C (type(O, controlLever) -> type(O, lever)).*O C (type(O, standardButton) -> type(O, button)).*O ((physicalObj(O) ; abstractObj(O)) -> object(O)).% Object distractor rule*O1 *O2 (object(O1), object(O2) -> C domain(O1,O2)).% Object specificationsC physicalObj(pump1).C type(pump1, pump).C hasPart(pump1, pressure1).C hasPart(pump1, panel1).C property(pump1, state, oneOf(running, reset, halted)).C property(pump1, controlSource, list(lever1, button1, physicalModel)).C property(pump1, movable, true).C property(pump1, unique, true).C abstractObj(pressure1).C type(pressure1, pressure).C partOf(pressure1, pump1).C property(pressure1, controlSource, list(dial1, physicalModel)).C property(pressure1, unique, true).C physicalObj(panel1).C type(panel1, controlPanel).C partOf(panel1, pump1).C hasPart(panel1, cover1). 171



C hasPart(panel1, gauge1).C hasPart(panel1, dial1).C hasPart(panel1, lever1).C hasPart(panel1, light1).C hasPart(panel1, button1).C property(panel1, movable, false).C property(panel1, unique, true).C physicalObj(cover1).C type(cover1, cover).C partOf(cover1, panel1).C hasPart(cover1, screw1).C hasPart(cover1, hole1).C property(cover1, defaultLocation, on(panel1)).C property(cover1, movable, true).C property(cover1, unique, true).C physicalObj(screw1).C type(screw1, standardScrew).C partOf(cover1).C property(screw1, state, oneOf(tight,loose)).C property(screw1, loosenDir, ccw).C property(screw1, tightenDir, cw).C property(screw1, defaultLocation, in(hole1)).C property(screw1, turnable, true).C property(screw1, movable, true).C property(screw1, unique, true).C physicalObj(hole1).C type(hole1, standardScrewHole).C partOf(hole1, cover1).C property(hole1, location, in(cover1)).C property(hole1, movable, false).C property(hole1, unique, true).C physicalObj(gauge1).C type(gauge1, gauge).C partOf(gauge1, panel1).C hasPart(gauge1, range1).C hasPart(gauge1, range2).C property(gauge1, controlSource, pressure1).C property(gauge1, state, oneOf(within(range1),outside(range1))).C property(gauge1, movable, false).C property(gauge1, unique, true).C abstractObj(range1).C type(range1, range).C partOf(range1, gauge1).C property(range1, label, normal).C property(range1, unique, true). 172



C abstractObj(range2).C type(range2, range).C partOf(range2, gauge1).C property(range2, unique, true).C physicalObj(dial1).C type(dial1, dial).C partOf(dial1, panel1).C property(dial1, turnDir, cw).C property(dial1, controls, pressure1).C property(dial1, turnable, true).C property(dial1, unique, true).C physicalObj(lever1).C type(lever1, controlLever).C partOf(lever1, panel1).C hasPart(lever1, resetPos1).C hasPart(lever1, defaultPos1).C hasPart(lever1, leverSlot1).C property(lever1, weight, fixed).C property(lever1, defaultLocation, at(defaultPos1)).C property(lever1, returns2defaultLocation, true).C property(lever1, controls, pump1).C property(lever1, movable, true).C property(lever1, unique, true).C abstractObj(resetPos1).C type(resetPos1, position).C partOf(resetPos1, lever1).C property(resetPos1, label, reset).C property(resetPos1, location, above(defaultPos1)).C property(resetPos1, movable, false).C property(resetPos1, unique, true).C abstractObj(defaultPos1).C type(defaultPos1, position).C partOf(defaultPos1, lever1).C property(defaultPos1, location, bottom(leverSlot1)).C property(defaultPos1, movable, false).C property(defaultPos1, unique, true).C physicalObj(leverSlot1).C type(leverSlot1, slot).C partOf(leverSlot1, lever1).C property(leverSlot1, movable, false).C property(leverSlot1, unique, true).C physicalObj(light1).C type(light1, light).C partOf(light1, panel1).C property(light1, label, status). 173



C property(light1, color, oneOf(red, green)).C property(light1, controlSource, pump1).C property(light1, movable, false).C property(light1, unique, true).C physicalObj(button1).C type(button1, standardButton).C partOf(button1, panel1).C property(button1, controls, pump1).C property(button1, resistance, fixed).C property(button1, inDir, prependicularTo(panel1)).C property(button1, label, on).C property(button1, movable, true).C property(button1, unique, true).C physicalObj(genericButton).C type(genericButton, standardButton).% Initial state of objectsC configuration(t_1, panel1, state(closed)).C configuration(t_1, cover1, location(on(panel1))).C configuration(t_1, screw1, location(in(hole1))).*T *O *P *S C((starts(S, T); meets(S,T)), configuration(T, O, P) ->C configuration(S, O, P)).% Knowledge about locations*P *Q (location(P), location(Q) -> C domain(P, Q)).*O C location(at(O)).*O C locObj(at(O),O).*O C locObj(location(at(O)),O).*O C location(on(O)).*O C locObj(on(O),O).*O C locObj(location(on(O)),O).*O C location(awayFrom(O)).*O C locObj(awayFrom(O),O).*O C locObj(location(awayFrom(O)),O).*O C location(in(O)).*O C locObj(in(O),O).*O C locObj(location(in(O)),O).*O C location(over(O)).*O C locObj(over(O),O).*O C locObj(location(over(O)),O).% Knowledge about action termination% "If a postcondition is part of the action information, then the% action has termination information." 174



*E *P C(postcondition(E,P) -> termination(E)).% "If an action has a bounded path, then the action has termination."*E *O *T *P C(motion(E,O,T), pathEnd(E, P) -> termination(E)).% "If an action has a purpose and the purpose has a termination, then% the action has termination."*A *P C(purpose(A,generate(P)) -> termination(A)).% Knowledge about actions in the domain% General knowledge about actions and what it means for actions to be% "concrete"*A *R *O *P C(postcondition(A,configuration(O,P)), result(A,R) ->configuration(R,O,P)).*A C(pathDir(A,D) -> path(A)).*A C(pathEnd(A,D) -> path(A)).*A *O *T C(motion(A,O,T), path(A) -> concrete(A)).*A *O *W *D C(force(A,O), magnitude(A,W), pathDir(A,D) -> concrete(A)).*A *O *T *P U2(motion(A,O,T), purpose(A,P) -> concrete(A)).*A *O *T *P U2(force(A,O), purpose(A,P) -> concrete(A)).*P C(purpose(P), (?A purpose(A,generate(P))) -> concrete(P)).*A C((?S subactions(A, S), concreteAll(S)) -> concrete(A)).C concreteAll(nil).*A C((?N nextAction(A, N), concrete(A), concreteAll(N)) -> concreteAll(A)).*S *A U1(type(S,screw),postcondition(A,configuration(S,state(loose))) ->motion(A,S,rotational),(?D property(S, loosenDir, D), pathDir(A,D))).% Knowledge for opening the panel*A (postcondition(A, configuration(panel1, state(open))) ->U3 ?S(subactions(A,S), nextAction(S,nil),postcondition(S, configuration(screw1,location(awayFrom(hole1)))))).*A (postcondition(A,configuration(screw1,location(awayFrom(hole1))))-> U2 ?S?N (subactions(A,S),postcondition(S,configuration(screw1,state(loose))),nextAction(S,N), motion(N,screw1,translational),pathEnd(N,awayFrom(hole1)), nextAction(N,nil))).*A *O (postcondition(A,configuration(O,state(open))) ->175



P1 complex(A)).*A *O (type(O,screw), motion(A,O,rotational) ->U1 instrument(A, screwdriver)).% Knowledge for normalizing the pressure*A (postcondition(A,configuration(pressure1,state(normal))) ->U3 ?S(subactions(A,S), nextAction(S,nil),postcondition(S, configuration(gauge1,state(within(range1)))))).*A (postcondition(A,configuration(pressure1,state(normal))) ->P2 purpose(A)).*A (postcondition(A,configuration(gauge1,state(within(range1)))) ->U2(motion(A, dial1, rotational),?D(property(gauge1,turnDir,D), pathDir(A,D)))).*A (postcondition(A,configuration(pressure1,state(normal))) ->P1 complex(A)).% Knowledge for starting the pump*A (postcondition(A, configuration(pump1, state(running))) ->U3 ?S?N(subactions(A,S),postcondition(S,configuration(pump1,state(reset))),nextAction(S,N), nextAction(N,nil),force(N,button1), magnitude(N,greater(resistance(button1))),pathDir(N,inDir(button1)))).*A (postcondition(A, configuration(pump1, state(running))) ->P2 complex(A)).*A (postcondition(A, configuration(pump1, state(reset))) ->U2 ?S?N(subactions(A,S),motion(S,lever1,translational), pathEnd(S,at(resetPos1)),nextAction(S,N), force(N,lever1), pathEnd(N,at(resetPos1)),pathDir(N, oppositeDir(gravity)), magnitude(N,weight(lever1)),postcondition(N,configuration(light1,color(green))))).*A (postcondition(A, configuration(pump1, state(running))) ->P1 elaborate(A)).% Action: aC domain(a,a).S during(a, t).C result(a, r).S meets(r, t).S agent(a, u). 176



S postcondition(a, configuration(status1, pump(running))).S subactions(a, a1).S nextAction(a, nil).S parent(a, nil).% Action: a1C domain(a1,a1).S step(a1).S during(a1, t_1).S starts(t_1, t).C result(a1, t_2).S meets(t_2, t_1).S agent(a1, u).S postcondition(a1, configuration(panel1, state(open))).S subactions(a1, oa1).S nextAction(a1, a2).S parent(a1, a).% Action: oa1C domain(oa1,oa1).C domain(t_1_1,t_1_1).C domain(t_1_2,t_1_2).C time(t_1_1).S substep(oa1,a1).S during(oa1, t_1_1).S starts(t_1_1, t_1).C result(oa1, t_1_2).S meets(t_1_2, t_1_1).S agent(oa1, u).S postcondition(oa1, configuration(screw1, location(awayFrom(hole1)))).S subactions(oa1, ua1).S nextAction(oa1, oa2).S parent(oa1, a1).% Action: ua1C domain(ua1,ua1).C domain(t_1_1_1,t_1_1_1).C domain(t_1_1_2,t_1_1_2).C time(t_1_1_1).S during(ua1, t_1_1_1).S starts(t_1_1_1, t_1_1).C result(ua1, t_1_1_2).S meets(t_1_1_2, t_1_1_1). 177



S agent(ua1, u).S instrument(ua1, screwdriver).S motion(ua1, screw1, rotational).S pathDir(ua1, ccw).S postcondition(ua1, configuration(screw1, state(loose))).S nextAction(ua1, ua2).S prevAction(ua1,nil).S parent(ua1, oa1).% Action: ua2C domain(ua2,ua2).S during(ua2, t_1_1_2).S finishes(t_1_1_2, t_1_1).C result(ua2, t_1_2).S agent(ua2, u).S motion(ua2, screw1, translational).S pathEnd(ua2, awayFrom(hole1)).S nextAction(ua2, nil).S prevAction(ua2, ua1).S parent(ua2, oa1).% Action: oa2C domain(oa2,oa2).S precondition(oa2, oa1).S during(oa2, t_1_2).S finishes(t_1_2, t_1).C result(oa2, t_2).S agent(oa2, u).S postcondition(oa2, configuration(cover1, location(awayFrom(panel1)))).S nextAction(oa2, nil).S prevAction(oa2, oa1).S parent(oa2, a1).% Action: a2C domain(a2,a2).C domain(t_3,t_3).S step(a2).S during(a2, t_2).C result(a2, t_3).S meets(t_3, t_2).S agent(a2, u).S postcondition(a2, configuration(pressure1, state(normal))).S subactions(a2, na1). 178



S nextAction(a2, a3).S prevAction(a2, a1).S parent(a2, a).% Action: na1C domain(na1,na1).S substep(na1,a2).S during(na1, t_2_1).S starts(t_2_1, t_2).S finishes(t_2_1, t_2).C result(na1, t_3).S agent(na1, u).S motion(na1, dial1, rotational).S pathDir(na1, cw).S postcondition(na1, configuration(gauge1, state(within(range1)))).S purpose(na1, generate(a2)).S nextAction(na1, nil).S parent(na1, a2).% Action: a3C domain(a3,a3).S step(a3).S during(a3, t_3).C result(a3, t_4).S meets(t_4, t_3).S agent(a3, u).S postcondition(a3, configuration(pump1, state(running))).S subactions(a3, sa1).S nextAction(a3, nil).S prevAction(a3, a2).S parent(a3, a).% Action: sa1C domain(sa1,sa1).S substep(sa1,a3).S during(sa1, t_3_1).S starts(t_3_1, t_3).C result(sa1, t_3_2).S meets(t_3_2, t_3_1).S agent(sa1, u).S postcondition(sa1, configuration(pump1, state(reset))).S subactions(sa1, ra1). 179



S nextAction(sa1, sa2).S parent(sa1, a3).% Action: ra1C domain(ra1,ra1).S during(ra1, t_3_1_1).S starts(t_3_1_1, t_3_1).C result(ra1, t_3_1_2).S meets(t_3_1_2, t_3_1_1).S agent(ra1, u).S motion(ra1, lever1, translational).S pathEnd(ra1, at(resetPos1)).S nextAction(ra1, ra2).S parent(ra1, sa1).% Action: ra2C domain(ra2,ra2).S during(ra2, t_3_1_2).C result(ra2, t_3_2).S finishes(t_3_1_2, t_3_1).S agent(ra2, u).S force(ra2, lever1).S magnitude(ra2, weight(lever1)).S pathDir(ra2, oppositeDir(gravity)).S postcondition(ra2, configuration(light1, color(green))).S nextAction(ra2, nil).S prevAction(ra2, ra1).S parent(ra2, sa1).% Action: sa2C domain(sa2,sa2).S during(sa2, t_3_2).S finishes(t_3_2, t_3).C result(sa2, t_4).S agent(sa2, u).S force(sa2, button1).S magnitude(sa2, greater(resistance(button1))).S pathDir(sa2, inDir(button1)).S purpose(sa2, generate(a3)).S nextAction(sa2, nil).S prevAction(sa2, sa1).S parent(sa2, a3).
180



A.5 Morphological knowledgepresent = begin(form main; mode interrogative; number singular; person third) ~> does ;(form main; mode interrogative) ~> do ;() ~> ;end.you = begin () ~> you ; end.e = begin (cat np; case nom) ~> ; end.the = begin () ~> ; end.a = begin () ~> a ; end.from = begin () ~> from ; end.to = begin () ~> to ; end.by = begin () ~> by ; end.in = begin () ~> in ; end.within = begin () ~> within ; end.on = begin () ~> on ; end.onto = begin () ~> onto ; end.outof = begin () ~> out of ; end.awayfrom = begin () ~> away from ; end.counterclockwise = begin () ~> counterclockwise ; end.clockwise = begin () ~> clockwise ; end.until = begin () ~> until ; end.and = begin () ~> and ; end.then = begin () ~> then ; end.Then = begin () ~> Then ; end.? = begin () ~> ? ; end., = begin () ~> , ; end.; = begin () ~> ; ; end.: = begin () ~> : ; end.\. = begin () ~> \. ; end.pump = begin (cat n) ~> pump ; end.panel = begin (cat n) ~> panel ; end.cover = begin (cat n) ~> cover ; end.dial = begin (cat n) ~> dial ; end.lever = begin (cat n) ~> lever ; end.gauge = begin (cat n) ~> gauge ; end.pressure = begin (cat n) ~> pressure ; end.position = begin (cat n) ~> position ; end.light = begin (cat n) ~> light ; end.hole = begin (cat n) ~> hole ; end.screw = begin (cat n) ~> screw ; end.screwdriver = begin (cat n) ~> screwdriver ; end.button = begin (cat n) ~> button ; end.181



range = begin (cat n) ~> range ; end.red = begin (cat adj) ~> red ; end.green = begin (cat adj) ~> green ; end.loose = begin (cat adj) ~> loose ; end.tight = begin (cat adj) ~> tight ; end.normal = begin (cat adj) ~> normal ; end.RESET = begin (cat adj) ~> RESET ; end.ON = begin (cat adj) ~> ON ; end.move = begin(cat v; tense present; form main) ~> move ;(cat v; form gerund) ~> moving ;end.remove = begin(cat v; form main; tense present) ~> remove ;(cat v; form gerund) ~> removing ;end.turn = begin(cat v; tense present; form main) ~> turn ;(cat v; form gerund) ~> turning ;end.open = begin(cat v; tense present; form main) ~> open ;(cat v; form gerund) ~> opening ;end.normalize = begin(cat v; tense present; form main) ~> normalize ;(cat v; form gerund) ~> normalizing ;end.hold = begin(cat v; tense present; form main) ~> hold ;(cat v; form gerund) ~> holding ;end.press = begin(cat v; tense present; form main) ~> press ;(cat v; form gerund) ~> pressing ;end.start = begin(cat v; tense present; form main) ~> start ;(cat v; form gerund) ~> starting ;end.reset = begin 182



(cat v; tense present; form main) ~> reset ;(cat v; form gerund) ~> resetting ;end.be = begin(cat v; tense present; form main) ~> is ;(cat v; form gerund) ~> being ;end.A.6 Generation instancesgen = {name = { Step 1 for Novice }private = { S $ }shared = { P1 (P1 present(t_1) -> $) }describe = { ds(s,t_1,a1) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a1) termination(a1)concrete(oa1) termination(oa1)concrete(ua1) termination(ua1) nextAction(oa1,oa2)concrete(oa2) termination(oa2) }}.gen = {name = { Step 1 for Beginner }private = { S $ }shared = { P2 (P2 present(t_1) -> $) }describe = { ds(s,t_1,a1) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a1) termination(a1) }}.gen = {name = { Step 1 for Advanced }private = { S $ }shared = { P3 (P3 present(t_1) -> $) }describe = { ds(s,t_1,a1) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a1) termination(a1) }}.gen = {name = { Step 2 for Novice }private = { S $ }shared = { P1 (P1 present(t_2) -> $) }describe = { ds(s,t_2,a2) } 183



pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a2) termination(a2)concrete(na1) termination(na1) }}.gen = {name = { Step 2 for Beginner }private = { S $ }shared = { P2 (P2 present(t_2) -> $) }describe = { ds(s,t_2,a2) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a2) termination(a2) }}.gen = {name = { Step 2 for Advanced }private = { S $ }shared = { P3 (P3 present(t_2) -> $) }describe = { ds(s,t_2,a2) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a2) termination(a2) }}.gen = {name = { Step 3 for Novice }private = { S $ }shared = { P1 (P1 present(t_3) -> $) }describe = { ds(s,t_3,a3) }pattern = { ds(S,R,E) }features = { () }communicate = { subactions(sa1,ra1) nextAction(sa1,sa2)concrete(ra1) termination(ra1) nextAction(ra1,ra2)concrete(ra2) termination(ra2)purpose(sa2,generate(a3)) }}.gen = {name = { Step 3 for Beginner }private = { S $ }shared = { P2 (P2 present(t_3) -> $) }describe = { ds(s,t_3,a3) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a3) termination(a3)concrete(sa1) termination(sa1) nextAction(sa1,sa2) }}.gen = { 184



name = { Step 3 for Advanced }private = { S $ }shared = { P3 (P3 present(t_3) -> $) }describe = { ds(s,t_3,a3) }pattern = { ds(S,R,E) }features = { () }communicate = { concrete(a3) termination(a3) }}.
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Appendix BExcerpts from coded corpus
These appendix presents randomly selected excerpts from the three sources of coded corpusdata.B.1 [Reader's Digest, 1991]Excerpts from "Reader's Digest New Complete Do-It-Yourself Manual".Published by The Reader's Digest Association, Pleasantville, NY, 1991.Scanned by Joseph Rosenzweig, March 1994.Chapter One: Emergency repairs in your homeDraining the system1. Turn o� the main water supply valve. AC[p]2. Stop the water supply to the water heater by closing valve on pipe leading into heater.IC[pc-by:IC]If you have a gas heater, turn o� the gas cock. AC[p]If you have an electric water heater, switch o� its circuit breaker or remove the fusethat controls heater's circuit. IC[p], IC3. If your heating system utilizes a boiler, shut o� water supply line the water inlet valveto the boiler (the valve should be near the boiler on pipe leading into it). IC[p]Then ush all the toilets in the house and open all faucets. IC, IC4. If house is heated by a hot-water system, open the valves on all radiators (if they haveindividual valves). ICThen open the air vents on one or more radiators (baseboard or other type) on highestoor of house. ICHold cup under vent and catch water as it spurts out. AT[oa], IC5. Let the water in the boiler cool ( check the temperature indicator on the unit ).AC[arg], ICAttach a hose to the drain valve near the base of the boiler and lead it outdoors or toa drain lower than the boiler. IC, AC[adv,pp]Open the outlet and let the water ow out. IC, AC[arg]186



6. Attach a hose to the draincock of the water heater and direct the hose into a drain,to a place lower than the heater's draincock or outdoors and away from the house. IC,AC[pp,adv]Open the drain valve and let the water run out. IC, AC[arg]7. Open draincock on main water supply line. ICIf no such spigot exists, disconnect a �tting at lowest point in system to allow restof water to run out. IC[pc-to:AC[arg]]If your water comes from a well, switch pump circuit o�; drain above-ground pumplines and the storage tank. IC[p], IC8. Empty toilet bowls and tanks by siphoning or bailing and sponging. IC[pc-by:AC[oa]]Pour propylene glycol antifreeze (from plumbing supplier or RV or marine dealer) intotoilet bowls, sinks, tubs, dishwasher, and washing machine. AC[arg,pp]When power returns, put both washers through cycle. IC,Chapter Two: Hand tools and how to use themHand tools:Constructing a workbench 1. Measure and cut legs. IC, AC[arg]Subtract thickness of plywood layers (step 6) from �nal height to determine lengthof long leg pieces. IC[pc-to:IC]Cut other pieces 3 1/2 in. shorter than long pieces. AC[arg]Glue and nail one long and one short piece to form a unit. AC[oa], AC[pc-to:IC]Install nails in zigzag pattern. IC2. Cut two cross braces 20 in. long. AC[arg]Set them in place across short leg pieces. ICDrill 1/4-in.-diameter holes through braces and legs, two holes per leg. Do not fasten.AC[pp]Label braces and legs for reassembly, and set the braces aside. IC, IC3. Cut two top rails 45 in. long and two bottom rails 48 in. long. AC[arg]Align top rails with long leg pieces; bottom rails 8 in. from oor. ICBe sure labeled legs match and rails are inside them. ICDrill two 3/16-in. holes through each connection. AC[pp]Fasten with lag screws and at washers. IC4. Assemble base. ICPut cross braces in place on legs. ICFasten with carriage bolts, at washers, lock washers, and nuts. ICCut shelf,13 x 48 in.,from end of plywood panel. AC[arg]Put shelf in place on lower rails, and secure it with 8d nails or 1 1/4-in. wood screws.IC, IC5. Cut remaining plywood panel in half lengthwise; then trim panels to length. AC[pp],AC[pp]If mounting a wood working vise, allow a 15-in. overhang at vise end,4 in. at otherend, and 2 in. at sides. AC[arg]Attach one panel to base with 4d ringed nails or countersunk screws. IC187



6. Glue panels together with white or yellow glue. AC[adv]Clamp around perimeter, and weight the center to ensure proper bonding. IC[pp],AC[pc-to:IC]For extra strength, install countersunk ringed nails or screws around perimeter at 1-ftintervals. ICCut notch for vise. AC[arg,for]7. Cut 1 x 2's for edging. AC[for]Tack them around top rim, ush with bench top, with small ringed nails. AC[pp]Butt join (p.100) or miter (p.108) corners. IC, ICFit vise to workbench, following manufacturer's instructions. IC8. Cut hardboard to same size as edged bench top. AC[pp]Apply glue to hardboard and to bench. AC[pp]Align all edges; then apply clamps and weights to maintain position until glue dries.IC, AT[pc-to:AT[until]]Finish with at least three coats of polyurethane varnish (p.121). ICChapter Three: Power tools and how to use themBasic drilling1. Insert a bit fully into the chuck. IC[adv]Unless your drill has a power-driven automatic chuck lock, turn the chuck key in allthree holes so that all the jaws make contact with the bit. AC[pc-st]2. Make sure that the piece you are working on is �rmly supported or clamped down.ICIf possible, arrange the work so that you are drilling straight down or straight ahead.IC[ms]Make a starter hole with an awl or nail so that the drill bit won't wander. IC[ms]3. Place the bit in the starter hole and begin drilling at slow speed (if your drill isequipped with variable speed). IC, ICIncrease speed after the bit has penetrated the surface. AC[oa]Push �rmly, but don't force the drill to cut too fast. AT[oa]4. To help you keep the drill straight, position or clamp a try square or combinationsquare near the drill and keep the drill parallel to the square. IC[pc-to:AC[oa]],AC[oa], AC[oa]5. When drilling all the way through a piece of wood, clamp a piece of scrap wood behindit to prevent it from splintering. IC[pc-to:IC]Or drill into the wood only until the point of the bit emerges, then complete thedrilling from the other side. AC[pp,until], IC6. To make a hole of the depth you want, use a commercial drill stop or gauge, or wrapa piece of masking tape at the appropriate height on the bit. AC[pc-to:IC],IC[pc-to:IC]Then drill until the stop, gauge, or tape touches the surface of the material beingdrilled. AT[until]Adjustments 188



7. Put 1/2-in. bit into chuck. ICPlace square in front of bit, then at side, to check that it is perpendicular to drillpress table. IC[pc-to:IC]Adjust, if needed. AC[oa]8. Rotate same bit close to block of wood. AT[if]If you see a wobble in gap between bit and wood, rechuck bit and test again. IC, ICReplace chuck if wobble persists. IC9. Check angle of table. ICAdjust temporarily by inserting paper or foil shims, as shown. AC[pc-by:IC]Shim here to tilt downward. IC[pc-to:AC[oa]]Chapter Four: Fasteners and adhesivesJoining with wood screws1. Clamp the pieces together. IC[adv]Mark the screw positions and select a drill bit equal to the diameter of the screw'sshank (see chart, facing page). IC, ICMark the top piece's thickness on the bit with tape (or use a drill stop). ICThen drill a shank hole, stopping at tape. AC[fa:IC]2. Select a drill bit equal to the screw's diameter minus the threads. ICWith a piece of tape, mark the screw's length on the bit. ICDrill pilot hole, stopping at the tape. AC[fa:IC]3. If you are using athead screws, drill a countersink hole of the same diameter as thescrewhead. AC[arg]Check diameter by holding screwhead upside down over hole. IC[pc-by:AT[oa]]4. Rub wax on screw threads for easier installation. AC[p]Insert screw in the hole and drive it in until screwhead is ush with surface of work.IC, AC[p,until]Chapter Five: Woodworking, types of wood, techniques and �nishesOverlapping joints1. A table saw makes quick work of cutting end laps. Adjust saw blade height so thatthe teeth just touch the scribed cheek line. AC[pc-st]Using a miter gauge to guide work across saw table,make shoulder cut. IC[fa:AT[pc-to:AC[pp]]]2. Cut joint face with a tenoning jig. AC[arg]Clamp work vertically in jig and remove waste in a single cut. IC, ICIf you don't have a jig, hold stock as for shoulder cut and remove waste in severalpasses. AT[oa], IC3. A router with a straight bit can cut several lap joints at the same time. Mark andalign the pieces. IC, ICClamp a guide board across them, allowing for distance between bit and edge of baseplate, so that bit is set for shoulder cut. IC[fa:AT[oa],ms]189



4. Rout the waste, beginning at the tips of the pieces and cutting progressively closerto guide board. IC[fa:IC,fa:AC[arg]]If you are not experienced with a router, reposition the board to guide each cut.IC[pc-to:AC[arg]]Chapter Six: Metals and plastics, how to work with themStarter holes1. Clamp work securely in a vise, and drill a hole slightly smaller than the diameter ofthe tap. IC, AC[arg]( Check table at left for size the hole should be. ) ICLubricate threads of tap with cutting uid or (better still) swab them with semi-solidvegetable shortening. IC, AC[arg]Insert the lubricated tap in hole, aligning it carefully. IC[fa:IC]Check the tap against a square to make sure it is straight. IC[pc-to:IC]2. Use a tap wrench to turn tap clockwise. AT[pc-to:AC[oa]]For �rst few turns, exert moderate downward pressure. AT[for]After each turn or so, back tap out a bit. AC[p,adv]File burrs from edge of hole, brush away �lings, and add more lubricant to the tapto keep it from breaking o� in the hole. AC[pp], AC[adv], AC[arg,pc-to:IC]3. Continue the process of turning the tap, backing it out, brushing metal chips out ofthe threads, and adding lubricant. AT[oa]If you are threading a blind hole, as you near the bottom, remove tap completely aftereach turn or two, and use a piece of wire or a cotton swab to clean out metal chips.IC[adv], AT[pc-to:IC]Chapter Seven: Concrete and asphaltMixing by hand1. Using a square ended shovel, spread the premeasured sand evenly on the mixing area,add the required amount of cement, and mix until you get a mass of uniform colorwithout brown or gray streaks. AC[arg,pp], AC[arg], AC[until]Add coarse aggregate and turn the materials over at least three times or until all theaggregate is evenly distributed. AC[arg], AC[p,iter,until]2. Form a shallow depression in the middle of the sand-cement aggregate mixture; thenslowly pour in some of the measured water and work it in well, making sure to reachall the way to the bottom of the mound. IC, AC[p,arg], AC[p,adv,fa:IC]3. Pour more water into the depression, pull dry ingredients from the sides of the ringinto the water, and mix well. AC[arg], AC[arg], AC[adv]Continue adding water, a little at a time, and mixing the materials until they arethoroughly combined and evenly moist. AT[until]When all the water has been absorbed, turn the batch three or four times to ensurea uniform mix. AC[iter,pc-to:IC]Chapter Eight: Masonry, building with brick, block, and stoneMixing and handling mortar 190



1. Cut a slice of mortar from the mound on the mortarboard, using a sawing motion ofthe trowel. AC[arg]With the back of the trowel blade, shape the mortar into a "sausage" about the lengthand width of the blade. IC2. Load the trowel by sweeping it under the mortar slice from behind with a smoothforward motion. IC[pc-by:AC[pp]]As you lift the trowel, snap your wrist down slightly to bond the mortar to the trowelblade. IC[as:AC[arg],adv,pc-to:IC]3. To throw a mortar line, set trowel tip, face up, where line is to begin. IC[pc-to:IC]As you pull trowel toward you, turn blade 180 degrees. AC[as:AC[pp],arg]4. Furrow the mortar gently by running trowel tip, face down, along center of line.IC[pc-by:AC[pp]]5. To butter a brick before laying it, hold it upright and tilted at a slight angle. AT[pc-to:IC,oa]Pick up a small amount of mortar on the trowel and swipe it onto the end of the brick.IC[p], AC[pp]Squash mortar down against all four edges. AC[pp]6. Shove brick in place, its buttered end pressed against adjoining brick. AC[pp]Continue pressing until head and bed joints are the right thickness. AT[until]Trim excess mortar with trowel edge; use excess to butter next brick. AC[arg],AT[pc-to:IC]Chapter Ten: Plumbing repairs and installationsUnclogging sink drains1. Remove stopper or strainer, and block the overow opening with wet cloth to createa vacuum. IC, IC[pc-to:IC]Position plunger over drain, and cover cup with water. IC, ICTilt cup to release trapped air. AC[pc-to:IC]Plunge forcefully up and down 10 times; remove the plunger abruptly. IC[iter], ICRepeat several times. AT[iter]2. If drain is still plugged, place a bucket under trap, unscrew clean-out plug, and letthe water drain out. IC, IC, AC[arg](If trap has no clean-out plug, remove the entire trap, as in step 4.) ICProbe inside trap and pipe with bent wire to free clog. AT[pc-to:IC]Screw plug back in (or reconnect trap). AC[p], IC3. If the problem persists, feed auger through drain hole, cranking the tool's handleclockwise, until it hits clog | an area of mushy resistance. AT[fa:AT[oa],until]Work auger back and forth to break up the clog, then ush drain with hot water.AT[pc-to:IC[p]], IC4. If drain is still clogged, place a bucket beneath trap to catch water. IC[pc-to:IC]Holding trap in place, use a wrench with taped jaws to unscrew slip nuts.AT[fa:AT[oa],pc-to:IC]Remove trap, drain it, and clean it; replace washers if worn. IC, IC, IC, ICFeed auger into pipe in wall and break up blockage. AT[pp,oa], IC[p]Reassemble trap. IC191



B.2 [USAF, 1988]ORGANIZATIONAL MAINTENANCE JOB GUIDEFUEL SYSTEM DISTRIBUTIONUSAF SERIES F-16C/D AIRCRAFT10 OCTOBER 1988 CHANGE 5 6 SEPTEMBER 1991CONNECTION OF HYDRAULIC TEST STAND1. Open access door 3202. IC2. Depress system A reservoir dump valve until accumulator gage indicates prechargepressure (table 2). AT[until]3. Open access door 3216. IC4. Connect hydraulic test stand pressure and return couplings to system A ground testmanifold. IC5. Position FFP control valve handle in down (closed) position. IC6. Open access door 3101. IC7. Depress system B reservoir dump valve until accumulator gage indicates prechargepressure (table 2). AT[until]8. Open access door 3115. IC9. Connect hydraulic test stand pressure and return couplings to system B ground testmanifold. IC10. Connect cooling air. IC11. Connect electrical power (paragraph 9). ICREMOVAL OF CROSSFEED VALVE1. (A) Remove access panel 3428. (General Maintenance) IC2. (A) Purge A1 fuel tank (T.O. 1-1-3). IC3. (A) Disconnect valve fuel tube from valve. IC4. (A) Remove two couplings and slide two sleeves on engine supply and lower fueltubes. IC, AC[pp]5. (A) Note position of any washers; then remove two bolts, aft clamp, and washers (asrequired) from valve support bracket. IC, IC6. (A) Loosen two bolts on forward clamp. IC7. (A) Slide valve aft and remove. AC[oa], IC8. (A) Remove and discard four packings. IC, ICINSTALLATION OF FUEL PUMP NO. 41. (A) Lubricate and install packing (M25988/1-904) on elbow. IC, IC2. (A) Install elbow on pump. Do not torque jamnut. IC3. (A) Prepare pump and bulkhead mating surfaces for electrical bonding. IC4. (A) Connect electrical connector. IC5. (A) Position pump on bulkhead. IC192



6. (A,B) Install four bolts, four washers, four sealing washers, four washers, and fournuts. ICTorque to 50-100 inch-pounds. AC[pp]7. (A) Connect sense tube. ICTorque to 72-78 inch-pounds. AC[pp]8. (A) Torque jamnut to 72-78 inch-pounds. AC[pp]9. (A) Lubricate and install four packings (M25988/1-226), two on connection tube,one on union, and one on pump. IC, IC10. (A) Lubricate and install two packings (M25988/1-017), one on ejector pump motiveow tube and one on connection tube. IC, IC11. (A) Position connection tube and two sleeves and install two couplings. IC, IC12. (A) Install clamp, two bolts, and two nuts. ICTorque to 40-60 inch-pounds. AC[pp]13. (A) Position sleeve and install coupling. IC, IC14. (A) Lubricate and install four packings (M25988/1-017), two on turbine pump motiveow tube, one on connection tube, and one on turbine pump fuel �tting. IC, IC15. (A) Position turbine pump motive ow tube and two sleeves and install two couplings.IC, IC16. (A) Position clamp and install bolt. IC, ICTorque to 40-60 inch-pounds. AC[pp]17. (A) Install access panel 3426 using 45 bolts. (General Maintenance) IC18. (A) Install access panel 3428 using 45 bolts. (General Maintenance) IC19. (A) Perform fuel tank access panel leak check. (General Maintenance) ICCHECKOUT OF FUEL FLOW PROPORTIONER PRESSURE SWITCH1. (B) Connect hydraulic test stand to system A. (General Maintenance) IC2. (B) Position FFP control valve handle (access door 3216) to up (open) position. IC3. (A) Position main power switch to MAIN PWR. IC4. (A,B) Increase hydraulic pressure to 3000 psig as indicated on HYD PRESS A indi-cator. AC[pp]5. (A) Position ENG FEED switch to NORM. IC6. (A) Inspect pressure switch. IC7. (A) Position ENG FEED switch to OFF. IC8. (A) Position main power switch to OFF. IC9. (B) Disconnect hydraulic test stand. (General Maintenance) ICREMOVAL OF WING FUEL PUMPS1. (A) Remove access cover 5419 (left) or 6420 (right). (General Maintenance) IC2. (A) Raise handle on cartridge and turn to unlock position. AC[oa], AC[pp]3. (A) Pull straight up on handle until cartridge is clear of housing. AT[until]4. (A) Remove and discard four packings. IC, IC193



B.3 [ITL SIMA, 1997]Mitre saw assembly line instructionshttp://speckle.ncsl.nist.gov/~sima/vim/Build the table assembly.1. Press the button onto the spindle lock. AC[pp]2. Slip an O-ring onto the locking pin. AC[pp]3. Put the tip cover on the detent spring. IC4. Put a table on the �xture such that the bottom faces up. IC[ms]5. Pound the miter pointer on with a hammer. AC[pp]6. Align the 2 wear plates along the edges and screw them down with 4 screws. IC,AC[p]7. Insert the knob, put the clamp plate on just below it, and drive the 2 screws. IC,IC, AC[oa]8. Set the detent spring in place, screw it in with 2 screws, and ip the �xture. IC,AC[p], IC9. Attach the bevel pointer and bracket with a screw. IC10. Near the trunnion end, drive the 2 adjusting screws to the nut. AC[pp]11. Flip the �xture to vertical and grease the trunnion's place. IC, AC[arg]12. Apply Loctite to the stud and drive it into the end of the table. AC[pp], AC[pp]13. Put the trunnion in position and screw it into place. IC, AC[pp](a) Make sure that the trunnion can easily rotate. IC14. Place the assembly on the next line on the belt conveyor. ICPut the assembly onto the base.1. Get a base and grease its hole with a brush. IC, AC[arg]2. With the rounded part of the base toward you, push the curved spring in its slot.AC[p]3. Set the table assembly on top of the base such that the knob faces you. IC[ms]4. Get a dial indicator. IC(a) Occasionally calibrate the dial indicator on the at surface provided. IC5. Place the detent plate and drive the 3 screws into it just a little bit. IC, AC[pp]6. Rotate the table to the "0" mark on the detent plate and tighten the knob. AC[pp],IC7. Put the dial indicator on the table and level the trunnion. IC, IC8. Place the base fence and drive the 4 screws. IC, AC[oa](a) Be sure to drive the inner 2 screws �rst to prevent warping. IC[pc-to:AC[oa]]9. Place the left fence in its slot. IC10. Put the lower bevel knob on the fence. IC11. Place the clamp plate and upper bevel knob on the fence. IC194



12. Tighten both knobs with a screw gun. IC(a) With the dial indicator, make sure that the fence is perpendicular to the table.IC(b) Check the table's tightness. IC13. According to your shift, mark the unit with a marker. IC14. A�x the left and right warning labels to the detent plate. IC
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Appendix CPAR translation for SPUD
Here is pseudo-code, written loosely in C notation, for translating the PAR feature struc-ture representation into modal �rst-order logic for SPUD. Only the result attribute isconsidered common knowledge (thus using the C modal operator); all other action infor-mation is considered private to the system (the S modal operator). A few simple functionsare assumed to be de�ned for reading in the feature structure notation:getVal(string) returns the value for the attribute named by string in the top-levelfeature structure. The returned value could be a feature structure, a list, an atom(such as a string or a number), or the NULL object if the attribute is not found.getValInFS(FS, string) returns the value for the attribute named by string in thefeature structure named by FS. The NULL object is returned if the attribute is notfound.getValInList(list, string) returns the value for the item in list identi�ed by string.The NULL object is returned if the identi�er is not found.nonEmpty(var) returns false if var is the NULL object and true otherwise.The parts of PAR which are not used at all in this implementation are ignored, but couldbe translated in the same fashion.
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## STARTACTID = getVal("id");if (!nonEmpty(ACTID)) ACTID = assignID();DTID = getVal("during");if (nonEmpty(DTID)) printf("S during(%s, %s).\n", ACTID, DTID);RTID = getVal("result");if (nonEmpty(RTID)) {printf("C result(%s, %s).\n", ACTID, RTID);printf("S meets(%s, %s).\n", RTID, DTID);}PART = getVal("participants");if (nonEmpty(PART)) {AGID = getValInFS(PART, "agent");if (nonEmpty(AGID))printf("S agent(%s, %s).\n", ACTID, AGID);OBJFS = getValInFS("objects");if (nonEmpty(OBJFS)) {IID = getLabelledValInFS(OBJFS, "instrument");if (nonEmpty(IID)) printf("S instrument(%s, %s).\n", ACTID, IID);}}CS = getVal("core semantics");if (nonEmpty(CS)) {PREC = getValInfs(CS, "precondition");if (nonEmpty(PREC)) printf("S postcondition(%s, %s).\n", ACTID, PREC);POSTC = getValInfs(CS, "postcondition");if (nonEmpty(POSTC)) printf("S postcondition(%s, %s).\n", ACTID, POSTC);MOTION = getValInFS(CS, "motion");if (nonEmpty(MOTION)) {MOBJ = getValInFS(MOTION, "object");MTYPE = getValInFS(MOTION, "type");printf("S motion(%s, %s, %s).\n", ACTID, MOBJ, MTYPE);}FORCE = getValInFS(CS, "force");if (nonEmpty(FORCE)) {FOBJ = getValInFS(FORCE, "object");printf("S force(%s, %s).\n", ACTID, FOBJ);FMAG = getValInFS(FORCE, "magnitude");printf("S magnitude(%s, %s).\n", ACTID, FMAG);}} 197



SA = getVal("subactions");if (nonEmpty(SA)) {SAID = getValInFS(SA, "head");if (nonEmpty(SAID)) printf("S subactions(%s, %s).\n", ACTID, SAID);}NAID = getVal("next action");if (nonEmpty(NAID)) printf("S nextAction(%s, %s).\n", ACTID, NAID);PAID = getVal("previous action");if (nonEmpty(PAID)) printf("S prevAction(%s, %s).\n", ACTID, PAID);PARENTID = getVal("parent action");if (nonEmpty(PARENTID)) printf("S parent(%s, %s).\n", ACTID, PARENTID);if (definedAction(SAID)) insertTimeReln("starts", ACTID, SAID).if (!nonEmpty(NAID)) insertTimeReln("finishes", ACTID, PARENTID).## END
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Indexaction representation, 55{63improving, 141independently-motivated, 3PAR, 10, 56{59PAR translation, 59step predicate, 96substep predicate, 97time intervals, 60{61actionsaccomplishments, 15achievements, 15activities, 15classes, 5concreteness, 62{63culmination, 5, 17descriptions, 5instances, 5interactions and termination, 40interactions between, 8termination, 61{62adverbs, 38as source of termination, 43agent expertise, 63{71experience levels, 64{65

communicative goals, 31action relations, 104and e�ective instructions, 125and the SPUD algorithm, 93implementation issues, 126unique identi�cation, 91{93computation time, 123conjunctionof sentences, see discourse segments,with multiple sentencesof verb phrases, 90corpus analysis, 26culmination, see action, culminationacquired, 37inherent, 36description logics, 19discourse segmentsfor emphasizing sub-actions, 87implementation of, 78{79with multiple sentences, 90{91distractors, 2, 91domain representation, 32domain statements, 91dynamic semantics, 19199



e�ective instructions, 33and communicative goals, 125seeinstructions, e�ective, 1evaluation criteria, see implementation,evaluation criteriaevents, 16culmination, see actions, culminationtripartite structure, 17feature structures, 19�rst-order logic (FOL), 20free adjuncts, 39as source of termination, 43generation instances, 95{96generation processexample, 101implementationevaluation criteria, 142scalability, 143implementation issues, 125{126algorithm modi�cations, 126communicative goals, 126designing trees, 125stylistic preferences, 125instructions, 5e�ective, 1instruction step, 5, 35step-by-step, 6, 35language-neutrality, 32

lexical choice, 21{23lexical itemsimplementation of, 74{76multi-clausal, 84linguistic realization, 32LTAG, 26adjunction, 27alpha trees, 27beta trees, 27example of tree operations, 28means clauses, 45implementation of, 86modal logic, 20modal operators, 21morphological processing, 31noun phrasesfor empty subject, 81implementation of, 81{84object representation, 52{55objectsabstract, 55physical, 52properties, 53reasoning about, 54PAR, see action representation, PARpredicate-argument structure, 7prepositional phrases, 38implementation of, 81200



purpose clausescoding, 39fronted, 24, 46, 87{88implementation of, 86{88means clauses,seemeans clauses86non-fronted, 24, 46, 86{87referring expressions, 2scalability, see implementation, scalabil-itysentence structureimplementation of, 79sources of terminationanalysis, 43{49SPUD, 11algorithm, 91{93possible modi�cations, 126, 144stylistic preferences, see also views of ac-tionsimplementation issues, 125syntactic constructionsimplementation of, 76{78TAG, 26temporal relations, 17�nishes, 17meets, 17starts, 17terminationacquired, 37

termination conditions, 4, 47termination information, 2time intervals, see action representation,time intervalsuntil clauses, 40, 47implementation of, 88verb arguments, 38as source of termination, 43verb particles, 38as source of termination, 44verbsimplementation of, 79{81views of actions, 84{85complex, 85elaborate, 85purpose, 85
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EpilogueParaphrasing from the end of Marc Moens' dissertation [Moens, 1987], writing a disserta-tion seems to be an activity which does not culminate; at some point, it's just over.

ColophonThis dissertation was typeset using LATEX(2e) with the following style �les or packages:� the standard report style �le,� the 11pt style �le,� a version of the penndiss style �le (mostly recently modi�ed by I. Dan Melamedand Je� Reynar in April 1998), used to conform to Penn's dissertation requirements,� the lingmacros style �le (modi�ed 4/1/91 by Emma Pease), used for typesettingexample sentences,� the epsf style �le for including encapsulated PostScript �les,� the covingtn style �le (Michael A. Covington's linguistic macros, November 1992),used for typesetting feature structures,� the QobiTree package (written by Je�rey M. Siskind), used for typesetting syntactictrees,� the aaai-named style �le for typesetting citations and the bibliography, and� the makeidx style �le and makeindex Unix program, used for making the index.202


