GENERATING EFFECTIVE NATURAL LANGUAGE
INSTRUCTIONS BASED ON AGENT EXPERTISE

Juliet C. Bourne

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

1999

Dr. Bonnie Webber
Supervisor of Dissertation

Dr. Jean Gallier
Graduate Group Chair

COPYRIGHT
Juliet C. Bourne
1999

To all who have taught me, formally and informally, in my first thirty years.

iii

Acknowledgements

First and foremost, I must thank my advisor, Dr. Bonnie Webber, for all of her guidance
and patience in my dissertation quest. The idea to use SPUD to generate instructions for
my dissertation research came from her. In the final stages of producing this dissertation,
she proved invaluable in keeping me focused and working on the important issues. She
will always have my gratitude for all of her support in the last six years.

Secondly, I must thank Matthew Stone for writing SPUD and being a big help in
general to me over the last several years. Without his work in developing SPUD, this
dissertation, in its current form, would not have been possible.

Next, I must thank my dissertation committee members (Dr. James Allen, Dr. Norm
Badler, Dr. Aravind Joshi, and Dr. Martha Palmer) for overseeing the completion of
my dissertation. Their recommendation to consider the effect of agent expertise on the
generation of instructions has obviously shaped the final form of my dissertation work.

I would like to thank everyone in the various groups I have participated in (DTOG,
TOG/AMI, PAR, SPUD) for their helpful discussions out of which this dissertation began
to take shape. In particular, I would like to thank Ed Boyle of HRGA at Wright-Patterson
Air Force Base for his enthusiasm and support for research in generating instructions. He
helped to shape the research that I pursued with the DTOG and TOG/AMI groups.

Many thanks as well to my professors at the University of Pennsylvania, especially Dr.
Mark Steedman, Dr. Norm Badler, and Dr. Martha Palmer, for all of their help and
encouragement throughout my graduate career. I would also like to thank Mike Felker for
all of his hard work on my behalf, from beginning to end.

Finally, a big Thank You to my family, for their love and support.

v

This work has been supported by a Patricia Harris Fellowship, the U.S. Air Force
through Delivery Orders #8 and #17 on F41624-97-D-5002, and the National Science
Foundation through Grant #IRI195-04372.

Abstract

GENERATING EFFECTIVE NATURAL LANGUAGE INSTRUCTIONS
BASED ON AGENT EXPERTISE
Juliet C. Bourne

Supervisor: Dr. Bonnie Webber

The automatic production of Natural Language instructions, i.e. those suitable for use
by humans, has become an active area of research in recent years. In order for computer-
generated instructions to be useful, they must be effective in accurately conveying the
actions that are to be carried out by an agent. Conveying termination information, or
when to stop performing an action, has been the focus of my dissertation research as it
is an important part of generating effective instructions. I have done a corpus analysis of
3000 simple step-by-step maintenance instructions to study how termination information
is expressed in naturally occurring texts. Using insights gained from the corpus analysis
as well as the simulation of virtual agents carrying out similar tasks, I have specified an
action representation, rules for reasoning about action information (particularly termina-
tion information), and some differences between agents with different levels of expertise.
SPUD, a Natural Language generator developed at the University of Pennsylvania, takes
this information, as well as information about the syntactic constructions used in instruc-
tions, and reasons about the best way to convey action information in effective instructions

for particular agents.

vi

Contents

Acknowledgements

Abstract

1 Introduction

1.1
1.2
1.3
14

Expressing Action Termination
Representing Action Information
Generating Effective Instructions

Contributions and Overview of Work

2 Background

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Action Ontology e

Action Representation

Expressions of purposeo
Lexicalized Tree-Adjoining Grammar

Natural Language Generation

3 Expressing Action Termination

3.1
3.2
3.3

About the Corpora
Methodology L
Results and Analysis L

3.3.1 The use of verb arguments, particles, adverbs, and free adjuncts

vil

iv

vi

10
11
12

15
15
19
20
21
24
26
31

41
43

3.3.2 The use of prepositional phrases

3.3.3 The use of purpose clauses o000
3.3.4 The use of until clauses 0.
3.4 Conclusion e

Representing Objects, Actions, and Agent Expertise

4.1 The Example Domain00
4.2 Object Information L L o
4.3 Action Information oo o
4.3.1 Parameterized Action Representation (PAR)
4.3.2 Reasoning about action termination
4.3.3 Reasoning about concreteness of actions
4.4 Agent Expertise Information 00000
4.4.1 Agent Types
4.4.2 General knowledge oo oo
4.4.3 Specific knowledge oL
4.4.4 Reasoning about agent knowledge
4.5 Conclusion e

Generating Instructions using SPUD

5.1 Basic Lexical Information
5.1.1 Specifying lexical itemso
5.1.2 Specifying syntaxo oL
5.1.3 Discourse and sentence structure
5.1.4 Verb phrases
5.1.5 Noun phrases
5.2 Multi-clausal lexical items 0oL
5.2.1 Stylistic preferences oL
5.2.2 Purpose and means clauses oL
5.2.3 Until clauses
5.2.4 Conjoining clauses oo

viii

5.2.5 Multi-sentence instruction steps 90

5.3 The SPUD Algorithm 91
5.4 Generating Example Instructions 0o 93
5.4.1 Generation instances 95
5.4.2 Opening the panel o 96
5.4.3 Normalizing the pressure e 109
5.4.4 Starting the pump L 115

9.5 Discussiono 123
6 Related Work 128
6.1 Instruction Generation Systems 0oL 128
6.1.1 COMET, 1990; rating:[-,-,~,+,+] 129
6.1.2 EPICURE, 1992; rating:[~,~,—,+,+]1 129
6.1.3 TECHDOC, 1994; rating:[~,” ,+,+,-1 130
6.1.4 IDAS, 1995; rating:[~,+(+),~,=,7] 130
6.1.5 IMAGENE, 1995; rating:[* (") ,-,~,=-,?1 131
6.1.6 GhostWriter, 1996; rating:[-,-,-,7,7] 132

6.2 Other approaches in Natural Language Generation 132
6.2.1 Paris, 1988 132
6.2.2 Mellish and Evans, 1989 L 133
6.2.3 Bateman and Paris, 1989 oL 134
6.2.4 Scott and de Souza, 1990 134
6.2.5 Rosner and Stede, 1992o 134
6.2.6 McKeown, Robin, and Tanenblatt, 1993 135
6.2.7 Kosseim and Lapalme, 1995 136
6.2.8 Nicolov, Mellish, and Ritchie, 1996 136

6.3 Discussiono e e 137
7 Conclusions and Further Work 138

X

A SPUD files
A1 Lexical items e
A2 Trees o o
A.3 Modal operators
A.4 Domain knowledge
A.5 Morphological knowledge oL

A.6 Generation instances

B Excerpts from coded corpus
B.1 [Reader’s Digest, 1991]
B.2 [USAF, 1988] o
B.3 [ITL SIMA, 1997] o o i e e

C PAR translation for SPUD

152
152
163
170
170
181
183

186
186
192
194

196

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

Summary of codes used in corpus analysis 41
Overall Frequency of Main Clause Verb Phrase Codes 42
Frequency of Additional Codes, 42
Code frequencies by corpora and main code 43
Co-occurrence of verb phrase types with purpose clauses 45
Purpose clause distribution by lexical item and main verb phrase code . . . 45

x1

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Mourelatos’ typology of situations
Moens and Steedman’s classification of events along two dimensions

Moens and Steedman’s tripartite structure of events/actions
Allen’s thirteen relations between intervals
Possible locations for lexical choice in a NLG system
Tree for a simple sentence, simpleS(S,R,E,A)
Tree for transitive verbs, transitive VP(S,R,E,A,0)
Auxiliary tree bVPpp(S,R,E,P,O)
Example lexical items
Construction of example sentence

Construction of example sentence (continued)

Examples of by purpose (means) clauses
Examples of (non-fronted) to purpose clauses

Examples of fronted to purpose clauses

A control panel forapump L Lo
Portion of action/sub-action tree in the control panel domain
Knowledge about the screw L.
Part/whole object tree in the control panel domain
Object information for the lever’s “RESET” position
The structure of PAR o

PAR example and its translation into mFOL

xii

4.8

4.9

4.10
4.11
4.12
4.13
4.14

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

Rules for time subintervals.o oo 0oL
Rules for reasoning about termination information
Rules for concreteness oL oL
Nested modal operators for agent types
Agent knowledge about opening the panel
Action information for opening the panel (and its sub-actions)

Action information for opening the panel (cont’d)

Lexical item entry for the verb turn
Full SPUD specification of the simpleStree
Graphical specification of the simpleS tree
Basic discourse segment entry Lo

Simple sentence entryo oL Lo L

Means clause entry
Discourse segment entry for emphasizing actions done for a purpose

Purpose clause entry L
Fronted purpose clause entry 0oL
Until clause entry
Entry for conjoining verb phrases (“and then”)
Multi-sentence discourse segment entry L.
SPUD’s algorithm o
Actions for example instructions L.
An example generation instance (Step 1 for Advanced)
Action information for opening the panel
Action information for removing the screw and the panel
Action information for how to remove the screw

Agent knowledge for Step 1 oo

5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48
5.49
5.50

Generation of Step 1 for Advanced, part 1 101

Generation of Step 1 for Advanced, part 2 102
Output: Step 1 for Advanced o oL 103
Generation instance: Step 1 for Beginner 103
Generation of Step 1 for Beginner, part 1 104
Generation of Step 1 for Beginner, part 2 105
Output: Step 1 for Beginner 106
Generation instance: Step 1 for Novice 106
Generation of Step 1 for Novice, part 1. 107
Generation of Step 1 for Novice, part 2. 108
Output: Step 1 for Novice 110
Action information for normalizing the pump’s pressure 111
Agent knowledge for Step 2o 112
Output: Step 2 for Advanced 112
Lexical entry for normalize Lo 113
Generation instance: Step 2 for Beginner 113
Output: Step 2 for Beginner 114
Lexical entry for clockwise 114
Output: Step 2 for Novice o oo 116
Action information for starting the pump 117
Action information for resetting the pump oL 118
Agent knowledge for Step 3 o Lo 119
Verb entries for Step 3o 120
Output: Step 3 for Advancedo oo 121
Generation instances: Step 3 for Beginner and Novice 122
Output: Step 3 for Beginner 123
Output: Step 3 for Novice o o oo 124

Xiv

Chapter 1

Introduction

The automatic production of Natural Language instructions, i.e. those suitable for use
by humans, has become an active area of research in recent years. The costliness of
producing instruction manuals for complex systems, not to mention keeping the manuals
updated, motivates the exploration into automating the process. On-line and interactive
instruction systems are also gaining popularity for their ease-of-use and cost effectiveness.
For any method of generating instructions to be successful, it must pay attention to the
quality of the instructions that it produces or else what it produces will be useless for the
purpose of replacing human-generated instructions. [Dixon, 1987] notes that when reading
instructions, the reader must construct a mental representation (a plan) which is adequate
for performing the given task. The constructed plan is only appropriate if it allows the
reader to perform the task correctly and efficiently. Therefore, generated instructions
must be effective in conveying the actions that are intended to be carried out so that the
reader can form the appropriate plan. FEffective instructions are those that convey all of
the necessary information about performing the intended actions; if one piece of necessary
information is missing, an instruction leaves open the possibility that an incorrect action
will be performed. Therefore, merely automating the generation of instructions is not
enough. Generating effective instructions should be at the heart of any system attempting
to replace humans in producing instruction manuals and interactive instruction systems.
One aspect of Natural Language Generation is the description of entities so that they

are distinguished from all other entities. Entities include objects, events, actions, and states

of the world. Much attention has been paid to objects and the generation of their referring
expressions, descriptions meant to pick out or refer to an entity. Creating a referring
expression involves iteratively including properties which distinguish an object from the
greatest number of its remaining distractors (other objects that it could be confused with)
until the description can refer only to the intended object. For instance, if there are
two blocks, one red and one blue, the referring expression for either of the blocks has to
include its color property to distinguish it from the other block. The problem of generating
referring expressions for entities other than objects has not been explored as thoroughly.
An important part of generating instructions is distinguishing the actions that are to be
carried out from similar actions. The generation of referring expressions for actions entails
representing action information, distinguishing one action from another, and having a
generation system that can consider information provided at the clause level (i.e. in a
whole sentence) and can use multiple clauses (i.e. sentences with subordinate clauses) to
describe actions.

Generating a distinguishing referring expression for an action is important, however
it does not fully address the problem of producing effective instructions. Beyond distin-
guishing an action from other actions, effective instructions need to provide information
that supports the performance of the action. Research involving the simulation of agents
performing tasks helps define necessary action information which needs to be represented.
The information that must be provided in order to have a simulated human agent carry
out an action correlates, at some level, with the information that must be provided in
Natural Language instructions to a human. When to stop performing an action represents
a vital piece of action information. Without this termination information, an agent (simu-
lated or otherwise) does not know when to stop performing an ongoing action. The action
representation must therefore support termination information so that this information
can be conveyed to the reader. Different aspects of an action can provide termination
information, such as a post-condition or a path. Reasoning about action information to
determine the implied termination information is therefore an important part of ensuring
an action’s performability.

The need for such reasoning requires that the system used for implementing the action

representation and generating instruction be powerful enough to support the formaliza-
tion and use of rules for reasoning. Given the common need for action performance, a
single representation of action information suitable for both simulated agents and Natural
Language should be feasible. Such a representation would be independently-motivated, in
that it would not be useful only for Natural Language purposes. It would represent all
aspects of actions needed for performance and therefore it would support the generation of
effective instructions. The Natural Language generator SPUD, developed at the Univer-
sity of Pennsylvania [Stone, 1998], has the representational and reasoning power needed
for generating effective instructions. SPUD’s method of generation allows it to flexibly
produce descriptions of actions that are linguistically-sound, not ad hoc. Using SPUD’s
ability to reason about the information conveyed by action descriptions, even partial ones,
generating effective instructions is reduced to specifying rules for reasoning about action
information and encoding the ways of conveying action information.

In the rest of this chapter, some introductory details are presented regarding the main
areas of this dissertation. First, expressions of action termination are introduced in more
depth. Next, action and agent representations and their relation to effective instructions
are discussed. Finally, the method of generation is briefly outlined. This chapter ends with
the claim of this dissertation, an outline of the contributions of this dissertation work, and

an overview of the rest of the dissertation.

1.1 Expressing Action Termination

As alluded to earlier, an important goal of generating Natural Language instructions is to
describe actions fully and accurately so that they can be carried out correctly. This goal
is particularly important to the generation of written instructions where the “speaker”
(i.e. author) and the “hearer” (i.e. reader) are separated spatially and temporally. In the
case of instruction manuals, the hearer does not have the opportunity to ask questions to
clarify the action to be performed and the speaker likewise does not get any feedback from
the hearer about the success of the instructions. Therefore, attention must be paid to the

effectiveness of the instructions generated to be sure that they can be carried out correctly.

Attention must also be paid to the efficiency or conciseness of the instructions. That is,
all the necessary information should be included in an efficient manner in order to avoid
confusion caused by extra information. Understanding how information about an action
is expressed, which ways of expressing information are used for which purposes, etc., is
essential to generating instructions that describe actions both effectively and efficiently.

How is action termination expressed in instructions? The answers have been found
through the analysis of naturally-occurring texts in terms of linguistic constructions (i.e.
ways of expressing information in Natural Language) used to describe actions. Linguistic
constructions include required verb arguments (e.g. “Rotate the dial’), optional verb
adjuncts (e.g. “Rotate the dial 90 degrees”), prepositional phrases (e.g. “Rotate the
dial to the 90-degree mark”), until clauses (e.g. “Turn screw until it is loose”), etc. All
are used to describe necessary pieces of information about actions; in fact, all of the
linguistic constructions mentioned above can be used to provide termination information.
If termination information is missing, then an instruction may be ineffective unless it
is known that the hearer can infer the correct termination information from the action
information presented. Termination information can be conveyed both through explicit
termination condition phrases, e.g. wuntil clauses, as well as implicitly through phrases
expressing other parts of the action instance. Therefore, knowing how action information
can be expressed is necessary to generate effective instructions.

Expressing action information has been explored in several ways by other researchers.
For instance, the issue of lexical choice, choosing the words to describe an entity, has
been addressed by a number of researchers (e.g. [Reiter, 1991; Kosseim and Lapalme,
1995; Elhadad et al., 1997]). The generation of referring expressions for objects at various
points in a set of instructions, has also been explored [Dale, 1992]. Expressing the purpose
of an action, i.e. “Do x to do y,” has been examined by several researchers as well [Di
Eugenio, 1993; Vander Linden, 1994; Kosseim and Lapalme, 1995; Vander Linden and
Martin, 1995; Di Eugenio and Webber, 1996; Hartley and Paris, 1996]. Despite all of
this previous work, discussed in Chapter 2, the issue of expressing an action’s termination
remains unexplored.

Before discussing how termination information is expressed, I should clarify the terms

which I will be using to refer to actions and their descriptions in Natural Language:

Action class refers to a set of actions with the same main semantic components (e.g.
motion of an object). However, sometimes I will also use this to refer to more
specific action classes incorporating certain types of objects. The context in which
the term is used should distinguish whether I am referring to a general or specific

action class, if it makes a difference.

Action instance (or just action) refers to a particular action in the world, complete with

specific properties and particular entities.

Action description refers to the set of linguistic expressions used to describe a particular
action instance. These expressions do not necessarily have to be contiguous in the

actual text and they can appear across multiple sentences.

Instruction refers to a single sentence with an imperative main clause which describes
an action (or actions) for the hearer to perform.! It need not contain a complete

action description.

Instruction step refers to a set of instructions describing a single step of a task. The task

step could involve multiple actions, and therefore could require multiple instructions.

Actions have different types of aspectual (temporal) structure (discussed in Chapter 2)
and the type of an action can provide termination information. For instance, culmination
(which is termination plus a change of state) can be inherent in some actions, such as
removing and breaking. For these actions, just giving the main component of the action,
i.e. the change of state, provides the termination information. However, some actions,
such as turning, do not have inherent culmination or termination. These actions, called
activities, need to have termination information included in their action descriptions in
order to produce effective instructions. Termination information can be explicit in the
instructions, as mentioned before, or implicit in the interaction of the activity with other

actions in the instruction step.

!This restrictive definition is used because (as will be discussed later) the corpus analysis done for this
dissertation work is restricted to such instructions. Non-imperative instructions, such as modal instructions
(e.g. “You should do X”), do not appear in the subset of maintenance instructions used to build the language
model.

In Natural Language, information about an action is realized, or expressed in Natural
Language by many different linguistic sources. For example, the main component of the
action is usually expressed through the verb. Action verbs reflect the different aspectual
types of actions. For instance, the verb remove is considered an accomplishment verb,
which means that it has inherent culmination (among other things). However, the type
(and thus termination) of an action is determined by all of its information. Thus, linguistic
expressions for other parts of the action, such as the arguments to the verb and additional
phrases such as purpose clauses and temporal clauses, can change the type of the action
[Moens, 1987]. Interactions among these linguistic expressions affect the type of the action
expressed and should be considered when deciding how to describe an action.

The variety of linguistic constructions which express termination information provides
several choices for expressing the termination of an action, each with different implications
in different contexts. Characterizing the choices made in naturally-occurring instructions
(e.g. through a corpus analysis) determines how to automate the same choices in order to
produce natural and fluent instructions. Below I describe the characteristics of the corpus
instructions examined in terms of expressing action termination. These characteristics
demonstrate the genre of instructions generated by the implementation discussed in this

dissertation.

Corpus domain

The corpus analysis examines a corpus of simple step-by-step maintenance instructions
which includes parts of a “do-it-yourself” book for home maintenance and a collection of
technical orders (military instructions) for the maintenance of F-16 aircraft. It considers
only the numbered step-by-step parts of the texts rather than the general discussion in
the former and the notes, cautions, and warnings in the latter. In a corpus study done by
[Hartley and Paris, 1996], such step-by-step instructions are shown to be a sub-genre of
instructions. Their analysis shows that step-by-step instructions have linguistic features,
such as the dominance of imperative sentences, which distinguish them from other sub-
genres (e.g. reference and tutorial texts). Thus, restricting the corpus to step-by-step

instructions is linguistically-motivated and provides a manageable collection of contexts

and linguistic features to study.

Since the domains covered by the corpus of instructions are complex, the actions de-
scribed by the instructions are also complex and varied, including those involving motion
over time. Having such actions, as opposed to “change of state” actions, means that some
actions do not have inherent culmination and thus need termination information in their
descriptions. As I show in Chapter 3, termination information is usually explicit in each in-
struction?, either because the action has an inherent termination or because an expression

giving or implying termination is included.

Constructions

As noted above, termination information has many sources in an action description. These

sources fall into the following groups:

Predicate-argument structure consists of the verb and its required arguments, denot-
ing the participants of the action and other essential information. The verb alone

can have an inherent termination, as in
(1) Remowe the access panel.

or the verb combined with its specific argument or type of argument can give a

termination, as in
(2) Cut the wire.
(3) Pour one cup of water into the bowl.

Additional phrases, e.g. prepositional phrases (paths or locations), adverbial phrases

(direction and manner), etc., can also give termination information. For example:

(4) Rotate aerial refueling control to full counterclockwise (off) position.

[USAF, 1988]

%In the complex portion of the corpus (i.e. the “do-it-yourself” instructions), termination is sometimes
left to be inferred from knowledge the hearer is assumed to have about the domain.

The action description without the prepositional phrase, i.e. “Rotate the aerial re-
fueling control’, does not express when to stop the action of rotating the control.

Another example:
(5) Clamp work securely, and mark positions of screws. [Reader’s Digest, 1991]

In this example, the adverb securely indicates not only the manner of the clamping

but also when the action of clamping can stop (i.e. when the work is secure).

Additional clauses, such as until and when clauses, purpose clauses (including purposive
and clauses), etc., can provide the termination of an action. The following examples

are from the corpus of F-16 maintenance instructions [USAF, 1988]:

(6) a. Depress system A reservoir dump valve until accumulator gage [sic]

indicates precharge pressure.
b. Slide valve aft and remove.

c. Depress bleed valve sufficiently to obtain stream of fluid flow.

Interaction between an action and other actions, i.e. whether a generation or en-
ablement relationship exists between two actions, whether one action is done for the
purpose of another, whether the start of the next action implies the termination of
the previous one, etc., can give the termination of an action. Such non-lexicalized
sources of termination information require inference on the part of the hearer. For

instance:

(7) Hold bit against fence and wheel; roll it clockwise and swing it to 12 degree
line. [Reader’s Digest, 1991]

In this example, the actions of holding and rolling the bit acquire their terminations
from the last action in the sequence, that of swinging it to the 12-degree line. They
are performed until the last action is completed. No lexical information explicitly

indicates the first two actions’ terminations.

For any action, termination information can be combined from multiple sources as seen in

this example [USAF, 1988]:

(8) NOTE: To remove actuator, it will be necessary to lift actuator slightly and
rotate actuator 90 degrees clockwise until sufficient clearance is obtained

to disengage actuator splines.

This example is not in the step-by-step corpus. It is shown as a good example of multiple
sources of termination information and could be paraphrased as a step-by-step instruction

as

(9) To remove actuator, lift actuator slightly and rotate actuator 90 degrees clockwise

until sufficient clearance is obtained to disengage actuator splines.

showing the complex interaction of action information in order to provide termination
information.

While the corpus analysis shows that predicate-argument structure commonly conveys
termination, the way in which it provides termination information is semantically complex.
Similarly, gaining termination information through interactions with other actions is even
more complex, but it is not as frequent. The other two groups of sources account for a
significant portion of the corpus in which termination information is gained explicitly while
being semantically simpler. Thus, limiting the implementation of termination expressions
to these two groups does not greatly restrict the coverage of the naturally occurring data
and allows simple characterizations to be used.

Using a particular construction in an instruction causes the hearer to make some as-
sumptions about the world and the action to be performed. Characterizations of certain
constructions gleaned from the corpus study are discussed in Chapter 3 and encoded as
shown in Chapter 5. A related question is that, when termination information for an action
is not explicit in the instructions, is an ezpectation raised that the termination is assumed
to be known, inferable, or otherwise defaulted to by the hearer? The implementation of
domain knowledge, given in Chapter 4, discusses this point with respect to what the hearer
is assumed to know about the domain and its actions. In this way, the hearer’s ability to
infer termination information from an action description can be reasoned about and can

guide the generation process.

1.2 Representing Action Information

The Parameterized Action Representation (PAR), developed at the University of Pennsyl-
vania, is meant as an intermediate representation that can support both the animation
and Natural Language description of actions [Badler et al, 1997; Badler et al, 1998; Badler
et al., 1998]. As such a representation, PAR can represent actions at various levels of
abstraction, from general action classes to specific action instances (i.e. sets of action per-
formances). A PAR instance for an action consists of the features of the action, including
the main semantic components of the action which identify its general action class. Other
features include specific information about the action which distinguishes it from others in
its action class. For the purposes of providing information relevant to the termination of an

action as described above, the PAR needs to represent the following pieces of information:
e core semantics the state-change, motion, and/or forces of the action
e direction/path the direction or path of motion or force

e purpose the purpose for which the action is done: to achieve a particular state,

to generate another action, and/or to enable the next action

e termination — explicit termination conditions (events or states of the world) un-

related to other aspects of the action

e duration — explicit timing of the action (e.g. for 6 seconds) or iteration (e.g.

between 5 and 6 times)

Each of these can be realized in an action description. For instance, the core semantics is
usually realized as the verb, the path as a prepositional phrase, etc.

For actions that are part of an instruction step or that contain sub-steps of their own,
the PAR also needs to include information about the other actions in the instruction step.
For example, if an action has sub-steps, these should be given in the PAR instance for the
action. Likewise, a sub-step action instance should have pointers to the action instance

which it is a sub-step of as well as the other sub-steps.? Therefore, the following pieces of

3 Although only specific action instances are considered for the implementation, these pieces of informa-
tion could also be used when specifying the properties of action classes or generic actions.

10

information, each of which can also have a linguistic counterpart, are included in the PAR:
e subactions — elaboration of how to accomplish the action
e previous action — link to a previous action

e concurrent action — link to a concurrent action

next action — link to a following action
e parent action — link back to the parent action of which the action is a sub-step

The structure of the PAR is discussed in detail in Chapter 4. Rules for reasoning about
action information, e.g. determining whether termination information is implied, are also
presented. In addition, rules defining what particular agents know about actions in the
domain are discussed. These rules for reasoning about actions and agents both contribute

to generation of effective instructions.

1.3 Generating Effective Instructions

A Natural Language generator called SPUD (Sentence Planning Using Descriptions) [Stone
and Doran, 1997; Stone and Webber, 1998; Stone, 1998], developed at the University
of Pennsylvania, provides the necessary components for generating effective instructions.
SPUD forms descriptions of actions (as well as events, states, and objects) by choosing
lexical items from its Lexicalized Tree-Adjoining Grammar (i.e. words and their associated
linguistic constructions) which serve the given communicative goals best. Lexical items
are annotated with semantic and pragmatic information that SPUD can match against
the information that it is trying to convey. Using this framework to implement multi-
clausal sentences and multi-sentence discourse, instructions are generated from the action
representation and the semantic and pragmatic contexts determined empirically in the
corpus analysis.

Encoding constructions for SPUD consists of creating lexical items which specify their
syntax as well as the semantic and pragmatic contexts in which they are used (described

in Chapter 3). Additional communicative goals are given to SPUD as part of a generation

11

task in order to ensure that the necessary action information is conveyed. To determine if a
particular action description is effective, SPUD uses rules that it can use to check whether
the description provides termination information and other necessary action information;
these are presented in Chapter 4. Given all of this information, SPUD can be told to
generate a description of a particular action in the form of an instruction for a particular
agent. SPUD uses the semantic and pragmatic context to determine the best description
of the action, making sure that it satisfies the communicative goals (which in turn ensure
that it is effective for the performance of the action). SPUD, the encoded constructions,

and the generation of example instructions are described in more detail in Chapter 5.

1.4 Contributions and Overview of Work

In this dissertation, I claim that the generation of effective instructions can be accom-
plished through determining and encoding how action information is expressed naturally,
representing the necessary action information and formalizing rules for reasoning about it,
modeling agent knowledge, and providing all of this information to a Natural Language
generator capable of considering and reasoning about the information in an action descrip-
tion and its effect on an agent’s knowledge and ability to perform the action. In order to
support this claim, I have three interrelated goals in my dissertation work: characterizing
particular constructions used for expressing action termination, representing actions and
domain knowledge, and generating instructions from action instances and agent knowledge.

The contributions of this dissertation in these areas include:

e analysis of action types and termination information in naturally occurring instruc-

tional texts;

e use of an action representation developed for and capable of representing necessary

action information for performing actions;

e implementation of rules for reasoning about the effectiveness of action descriptions,
with respect to agent knowledge in the areas of concreteness and termination infor-

mation (i.e. action performability);

12

e implementation of agent expertise levels using modal operators for use in the gener-

ation of tailored instructions;

e demonstration of the generation of different instructions from the same action infor-

mation based on the assumed knowledge of the agents.

In Chapter 3, constructions used for expressing termination, along with the seman-
tic and pragmatic contexts in which they appear, are analyzed and characterized based
on actual language use. I have coded a corpus of instructions for the types of actions
that occur, the constructions which appear in the action descriptions, and the sources of
termination information. From the coding, I have analyzed the instructions and drawn
conclusions about the use of certain constructions for expressing termination information.
The characterization of the constructions are later expressed in the domain knowledge and
linguistic representation for the Natural Language generator.

In Chapter 4, I detail the implementation of domain knowledge, which includes repre-
senting action information as well as agent knowledge. The action representation supports
the necessary information about actions, including termination information, and includes
the relationships between actions, such as sub-steps and purposes, which can be sources
of termination information. I argue that the representation should be as language-neutral
as possible; that is, it should not be structured in a certain way just for linguistic reasons.
The action representation must be suitable for generating Natural Language from and yet
not be tied to any particular language or linguistic theory. The same holds true for the rest
of the domain knowledge, including knowledge about objects and agents. In addition, I
formalize the reasoning about the performability of actions and the experience that agents
have.

In Chapter 5, I bring the previous two chapters’ work together in the generation of
example instructions in the domain. The constructions for expressing action information
are encoded for SPUD so that it can create action descriptions based on the same seman-
tic and pragmatic contexts determined in the corpus analysis. The encoded constructions
give SPUD the option of spreading an action description over multiple clauses and sen-
tences, since information about an action (especially termination information) can appear

in multiple clauses and sentences. Stylistic preferences for different agent types are used to

13

guide SPUD in such choices. Using knowledge about the domain and the agent and rea-
soning about the information provided by constructions, SPUD determines the best way
to express action information for a particular agent and the given communicative goals.
In Chapter 6, I discuss related generation systems and compare them with the imple-
mentation presented in this dissertation. In Chapter 7, I conclude this dissertation with
a summary of what has been accomplished and what is left as further work. In the next
chapter, I discuss background material in the areas of action ontology, domain knowledge
representation, lexical choice and linguistic constructions for termination information, and

Natural Language Generation.

14

Chapter 2

Background

The following sections present background material for topics mentioned in this disserta-
tion. The first, and most central, is that of the classification of action types, presented
in the first section. Next, the representation of actions is discussed. Then modal first-
order logic is presented, as it is used to represent domain knowledge (objects, actions, and
agents). After this, the remaining sections of the chapter address various aspects of Natu-
ral Language Generation (NLG) research: lexical choice, or how words are chosen; work on
the expression of purpose in actions; LTAG, a grammar formalism; and finally, the major
issues for NLG systems. This material is meant to introduce some terms and concepts
referred to and relied upon later. Comparisons between the implementation discussed in

this dissertation and other NLG systems are presented in Chapter 6.

2.1 Action Ontology

As far back as Aristotle, philosophers and linguists have pondered the types of situations
(events, actions, and states) evoked in language. Vendler [Vendler, 1967] proposed a typol-
ogy of situations, distinguishing between accomplishments, achievements, activities, and
states, each of which has its own temporal structure and properties. An activity, such as
pushing a cart, has “no set terminal point,” while an accomplishment, such as drawing a
circle, has “a ‘climax’, which has to be reached if the action is to be what it is claimed

to be” [Vendler, 1967, p.100]. Achievements, such as reaching the top, “occur at a single

15

SITUATIONS

STATES OCCURRENCES
Samis happy |

PROCESSES EVENTS
Sam cleaned hisroom Sam saw Mary

Figure 2.1: Mourelatos’ typology of situations

| EVENTS |
atomic extended
+conseq | Harry broke the window Sue built a sandcastle
(telic) (achievement) (accomplishment)
-conseq Sandra hiccupped Max worked in the garden
(atelic) (point) (activity)

Figure 2.2: Moens and Steedman’s classification of events along two dimensions

moment”, whereas states, such as loving, “last for a period of time” [Vendler, 1967, p. 103].
Mourelatos [Mourelatos, 1981] proposed a similar typology, but he collapsed accomplish-
ments and achievements together as events (see Figure 2.1, adapted from [Passonneau,
1987, Figure 1]). Moens and Steedman [Moens and Steedman, 1987] follow in the same
vein, classifying situations into states and events. However, they make a finer and more
systematic distinction between the kinds of events (and, therefore, actions). Events/actions
are characterized along two dimensions the extension of an event or action in time (or,
alternatively, its ability to be decomposed into sub-events or sub-actions) and the existence
of characteristic consequences associated with the event or action (see Figure 2.2, adapted
from [Moens and Steedman, 1987, Figure 1]).

While all four types of events/actions shown in Figure 2.2 exist, actions which appear

in maintenance instructions tend to be either achievements or accomplishments. Both

16

culmination

preparatory consequent
process state

Figure 2.3: Moens and Steedman’s tripartite structure of events/actions

of these types have consequences, or effects on the world, which is the general point in
maintenance tasks. Another feature they have in common, related to the fact that they
have consequences, is that they have defined endpoints. That is, achievements and ac-
complishments, as part of their meaning, include when to stop doing the actions. This
inherent termination can be seen in the tripartite representation of actions that [Moens
and Steedman, 1987] propose (Figure 2.3). In this representation, actions can have a
preparatory process, a culmination point, and a consequent state. The culmination point,
right before the consequent state begins, is the termination of both achievements and
accomplishments. The difference between the two types is that an achievement does not
have a characteristic preparatory process leading up to the culmination. Despite this, they
are interchangeable by stripping away or adding the preparatory process, depending on
the importance placed on the preparatory process.

An important part of understanding instructions is understanding how the different
actions in an instruction step are related temporally (as well as causally). While instruc-
tions are usually given in the order in which they are to be done, it is still sometimes
necessary to express more complex temporal relationships, such as overlap or concurrency.
Allen [Allen, 1983; Allen, 1984] has identified a set of thirteen temporal relations between
the intervals (spans of time) over which situations hold or take place, shown in Figure
2.4 (adapted from [How, 1993, Figure 2.5]). Three of these (meets, starts, and finishes)
figure prominently in the representation of actions and their associated time intervals in

this dissertation.

17

A

A

A

Relation
A B
precedes B I I I
A B
medts B —+—
A
o
overlaps B B
—
A
starts B jl
—
A
-
during B B
]
A
finishes B B}—
}7
A
equals B B

B

(o9)

(o9)

os)

Inver se Relation

follows A

met-by A

overlapped-by A

started-by A

contains A

finished-by A

Figure 2.4: Allen’s thirteen relations between intervals

18

2.2 Action Representation

First-order logic, description logics, and feature structures have been used in representing
actions for various purposes. Steedman [Steedman, 1997] has proposed encoding the se-
mantics of events/actions in a dynamic semantics formalism, an extension of modal logic
where the occurrences of actions defines accessibility relations between possible worlds.
Dynamic semantics, as well as predecessors such as situation calculus and event calculus,
is meant as a representation for reasoning about actions, their temporal structure, and
their consequences. The generation system COMET [McKeown et al., 1990] uses Func-
tional Unification Formalism, an extension of functional unification grammar (related to
feature structures), to represent logical-form semantics of actions. COMET uses this rep-
resentation for lexical choice since the representations of actions and the representations
of linguistic constructions can be unified (i.e. their attributes compared and combined
in certain ways) to form descriptions of actions. Description logic representations, i.e.
combinations of feature structures and logic machinery, include CLASSIC (used by [Di
Eugenio, 1993], discussed briefly in Section 2.5) and LOOM (used by [Rosner and Stede,
1994], among others, as discussed in Chapter 6). Description logic representations have
been used to reason about the properties of actions and how they can be classified in an
action classification hierarchy. Description logics have even been used to represent lin-
guistic knowledge, classifying the semantics of linguistic constructions. Overall, feature
structures are the simplest and most common way of representing actions. Feature struc-
tures contain attribute-value pairs (e.g. [agent = youl) where the value is a simple token
or another feature structure. [Dale, 1992] is one good example of using feature structures
to represent action information, although the main focus is on object information (see
Chapter 6). PAR, the action representation used in this dissertation, can be implemented
as a feature structure representation and is discussed as such in Section 4.3.1. Feature
structures form the basis of most action representations because of their simple attribute-
value structure. While they suffice for representing information about actions, additional
machinery is needed to reason about the actions represented. In the next section, modal
first-order logic is discussed; it is the knowledge representation used in the implementation

described in this dissertation.

19

2.3 Modal First-Order Logic

First-order logic (FOL) consists of atoms, predicates, quantifiers, and variables combined
into formulas using logical operations of conjunction (and), disjunction (or), negation, and
implication. Formulas in FOL can express facts and rules about a domain. For example,

the following are FOL formulas:

bird(tweety)

Vz (bird(z) — flies(z))

The first formula states the fact that the predicate bird holds for the atom tweety, a
particular object in the domain. The second states the rule that for all objects (using
the universal quantifier V and the variable z) for which bird holds, the predicate flies
also holds. In English, these mean that “Tweety” is a bird and that all birds fly, re-
spectively. Using logical theorems which determine how to manipulate logical statements,
these formulas can be used to prove the formula flies(tweety), representing the reason-
ing that since “Tweety” is a bird, “Tweety” can fly. A straightforward correlation can
be made between the representational power of feature structures and that of first-order
logic. First-order logic can represent anything represented in a feature structure. By us-
ing FOL predicates corresponding to feature structure attributes and assigning identifiers
to entities (objects, actions, etc.), the same information found in feature structures can
be represented in FOL. For instance, the object feature structure for “T'weety” could be
[id = tweety; type = bird] and translated as the first FOL formula presented above.
Thus, FOL is suitable for representing and reasoning about many domains, particularly
those involving objects and their properties.

While FOL is powerful and can be used to represent and reason about actions, it is not
fully capable of representing and reasoning about the knowledge that agents might have
in a domain. In order to do so, a representation needs the ability to state that certain
pieces of knowledge are assumed to be known by certain agents. This cannot be done
with standard FOL, as all statements of knowledge have the same status (e.g. known
by everyone). One solution is to combine first-order logic and modal logic. Modal logics

denote the informational status of pieces of knowledge by predicating them with modal

20

I For instance, a modal operator, say U, could be used to represent an agent’s

operators.
assumed knowledge, and another, say S, could be used to represent the system’s knowledge.
Using these modal operators, what the agent is assumed to know can be reasoned about
separately from what the system knows. The relationship between these two operators
could be defined so that, in addition to other knowledge, the system knows everything the
agent is assumed to know; treating operators as sets of knowledge, this relationship would
be represented in set terms by S D U. For example, if the system knows that “Tweety” is

a bird and both the system and the agent know the rule about all birds flying, the FOL

formulas from before would be stated in modal FOL as

S bird(tweety)

U Vz(bird(z) — flies(x))

Using these formulas, the formula S flies(tweety) (i.e. the system knows that “Tweety”
can fly) can be proven but U flies(tweety) cannot. The fact that “Tweety” is a bird
is not predicated with the U modal operator and thus the agent does not know that
“Tweety” is a bird and cannot infer that “Tweety” can fly. In this way, agent knowledge
can be represented and reasoned about, distinct from other knowledge predicated about

the domain.

2.4 Lexical Choice

“The problem of determining what words to use for the concepts in the domain rep-
resentation is termed lexical choice. In an effort to make domain representations
independent of language, there may be a variety of different words that can be used to
express any concept in the domain, and a language generator must choose which one

is most appropriate in the current context.” [Elhadad et al., 1997, p.195]

The choice of words and linguistic constructions (i.e. syntax) anchors the generation of

instructions. Words and constructions need to be chosen based upon their meaning and

In the case of dynamic semantics, an action representation mentioned in the previous section, modal
operators are used to represent the effects of actions, in the sense of representing the state of the world
after an action occurs.

21

implications in expressing information. Lezical choice implementations rely on analyses of
words and constructions in natural texts. The choice of a particular word or construction
to express a piece of information depends on many contextual factors. Contextual factors
include previous syntactic and lexical choices, since they can affect the choices that can be
made subsequently. The structure of the domain, e.g. its objects and relations, also affects
lexical choice as it may force or preclude particular choices. What is commonly thought
of as “the context,” that is, information about the speaker, the hearer, and the previous
discourse, also contributes additional contextual factors. All of these contextual factors
constrain the choice of lexical items and their syntactic constructions, as described clearly
by [Elhadad et al., 1997].

The development of a lexical choice algorithm begins with determining correlations
between contextual factors and linguistic features of words and constructions, usually
through a corpus analysis as demonstrated by [Hartley and Paris, 1996, among others.
Once the contextual factors and the ways in which they constrain the range of linguistic
features have been determined, several methods can be used to perform lexical choice.
Since generation systems depend on lexical choice to determine the most appropriate way to
express information, lexical choice algorithms represent one of the key aspects of generation
systems. Lexical choice methods differ in a number of ways, including the constraints
which they consider, how those constraints are represented, the location of lexical choice
in the system architecture, and what the lexical choice algorithm receives as input. The
constraints used by a system determine its ability to choose between similar words and
constructions. If the constraints are general, then the lexical choice algorithm will be able to
make only coarse-grained decisions. In addition, the representation of the constraints, e.g.
as rules or heuristics, affects the location of lexical choice. If constraints are purely semantic
(i.e. determined only by content), then lexical choice can be done with content planning
(i.e. at location 1 in Figure 2.5). The advantage of this is that the lexical choice algorithm
has access to the domain representation, however this may mean that concepts and words
have a one-to-one correspondence, i.e. the same words are always chosen for the same
concepts, reducing the expressive flexibility of the system. Another disadvantage is the

fact that if it is discovered in surface realization (i.e. the choice of syntactic constructions)

22

Surface Realization

i

i

. Content Specification

|

Communication|
Request

Lexical

Choice

Lexicon Grammar

Representation

Adapted from Figure 1 of [Elhadad et al, 1997] |

1. Particular words to use are chosen during content planning.
2. Words are chosen after the complete content is specified.

3. Words are chosen simultaneously with choosing syntax.

Figure 2.5: Possible locations for lexical choice in a NLG system

that the chosen words cannot be used due to syntactic constraints, lexical choice must
be redone. At the other extreme in the system architecture shown in Figure 2.5, where
lexical choice is done with surface realization, constraints on lexical choice can rely on
semantics as well as syntax. This avoids the problem of having to redo lexical choice
because of syntactic constraints; however, depending on the particular architecture, lexical
choice algorithms might be deprived of consulting the domain representation as part of
the decision-making process. What input is provided to the lexical choice algorithm, i.e.
the information on which it bases its decisions, determines the quality of the decisions
made. Not enough information or the wrong kind of information can result in poor lexical
choice. All of these factors determine how well a lexical choice algorithm is able to choose

appropriate words or linguistic constructions.

23

2.5 Expressions of purpose

While the number of different linguistic constructions is considerable, those involving ex-
pressions of purpose have been the focus of much research, especially in terms of their use
in instructions. Since the performance of an action can change depending on the purpose
for which it is done, conveying an action’s purpose is important in instructions. Purpose
can modify many aspects of the performance of an action, including its termination and
manner. The decision to include purpose constructions in this dissertation stems from their
use to convey termination information for actions? and from the fact that understanding
how to express purpose is necessary in general in order to produce natural and effective
instructions. Thus, I briefly review some relevant research which explores how expressions

of purpose are related to the semantics of actions.

[Thompson, 1985] presents a corpus study in which she analyzes initial (fronted) and
final (non-fronted) purpose clauses. She discovers that, rather than being a choice
between putting a “purpose clause” before or after the main clause, initial and final
purpose clauses act as very different constructions. In a corpus of narratives, pro-
cedural texts, and a Master of Arts thesis, she found that only 18% of the purpose
clauses were initial purpose clauses and the rest were final purpose clauses. However,
in the two procedural texts, the percentage of initial and final purpose clauses were
significantly different: a 50%/50% split in one text and approximately a 25%/75%
split in the other. The different roles that initial and final purpose clauses play cause
this distinction between procedural texts and non-procedural texts. [Thompson,

1985] characterizes initial and final purpose clauses this way:

An initial purpose clause states a problem within the context of expectations
and the following clauses (often many) provide the solution to the problem. In
other words, initial purpose clauses guide the reader, providing a framework for

interpreting the main clause which is typically “weighty”.

2 As the next chapter shows, nearly a third of the purpose constructions in the corpus provide termination
information.

24

A final purpose clause states the purpose for doing the action in the main clause.
Serving such a local role, the scope of the final purpose clause is restricted to the
immediately preceding main clause (which gives an action by volitional agent).
Based on the non-use of commas (as opposed to initial purpose clauses), final

purpose clauses are more tightly linked to the action in the main clause.

This distinction between initial and final purpose clauses accounts for the fact that
procedural texts use more initial purpose clauses than other types of texts since
they are organized in terms of problems and solutions and thus favor initial purpose

clauses.

[Di Eugenio, 1993; Di Eugenio and Webber, 1996] look at purpose clauses with re-

spect to inferences that must be made to interpret instructions. They consider how
actions are related as well as the assumptions made to accommodate such relations.
While they deal with interpretation rather than generation, their analysis and con-

clusions are valuable and can be applied to generation.

[Kosseim and Lapalme, 1995] develop heuristics for determining how to express effects

and guidances. Effects are essentially generation relationships between actions and
other actions or events. Guidances are conditional generation relationships between
actions, i.e. the action to be generated will only occur if certain conditions hold.
This work explores how to realize these “semantic carriers” (rhetorical relations) as

purpose clauses, means (“by”) clauses, or statements of result.

[Vander Linden and Martin, 1995] perform a corpus analysis to determine correla-

tions between contextual factors (e.g., semantics, discourse, and the hearer model)
and the ways in which purpose is expressed in instructions. The decisions that are
made about the purpose expression include: its slot (position with respect to main
action), its form (grammatical category), its linker or cue words (fixed lexical items

in constructions), and how clauses are combined.

[Hartley and Paris, 1996] encode correlations of task elements and linguistic features

in a strata of networks for realization (e.g. lexical and syntactic) choices. The task

25

elements include goals, functions, constraints, etc., in the domain of software instruc-
tion manuals. The realization choices are based on systemic functional linguistics

(SFL) and they use a SFL-based tactical generator.

While the methods for choosing between forms of purpose expressions differ, one factor
remains fairly constant across discussions of choosing purpose expressions: the use of
corpus analyses. A corpus analysis, the study of naturally occurring texts, is the basis
for the decisions which are encoded in lexical choice algorithms. To some extent, I have
incorporated the previous work done on purpose constructions into the implementation in
this dissertation, in terms of the types of purpose relationships between actions as well as
the overall method for arriving at characterizations of particular constructions and how to
choose between them. This is discussed is more detail in the next chapter, which presents

the corpus analysis done for this dissertation.

2.6 Lexicalized Tree-Adjoining Grammar

Every NLG system needs some way to represent the grammar, or language model, for the
texts it produces. In this implementation, the Natural Language generator, SPUD, uses a
Lexicalized Tree-Adjoining Grammar (LTAG) [Schabes, 1990]. Tree-Adjoining Grammar
(TAG) is a syntactic formalism in which trees define individual pieces of syntax and oper-
ations to combine trees denote how syntactic components can interact [Joshi et al., 1975].
LTAG is a variant of TAG in which each syntactic tree is anchored by (i.e. associated
with) at least one lexical item (word). For example, consider the trees shown in Figures
2.6 and 2.7, presented in SPUD’s non-traditional fashion.> The first shows a tree with an
inflectional item anchoring a sentence (S) which consists of a subject (NP) and a predicate

(IP).* Unlike most other trees, lexical items which anchor this tree, i.e. tenses such as

3This graphical tree format is used for readability purposes. The actual input format to SPUD is shown
in Appendix A.2. Although not shown in the graphical format, syntactic features as well as pragmatic
information are associated with each tree. Technically, the addition of features makes this Feature- Based
LTAG. The addition of semantic indices (e.g. (S,R,E,A)) and pragmatic information makes this use of
LTAG non-standard.

“Treating inflection as anchors for sentence trees differs from most LTAG uses which usually use verbs
as anchors for sentence trees. The decision to treat inflection this way does not have a bearing on the
rest of the work in this dissertation and could have been done differently without significant change to the
results.

26

S(S.R.E,A)

NP(A)L IP(S,R,E)

wInfl(S,R,E) VP(S,R,E)}

|
o

Figure 2.6: Tree for a simple sentence, simpleS(S,R,E,A)

VP(S,R,E)
N

V(E) wNP(O){
|

<

Figure 2.7: Tree for transitive verbs, transitive VP(S,R,E,A,0)

present or past, are realized by affecting features of other parts of the tree (in this case, the
inflectional form of the verb). The second tree (Figure 2.7) shows a transitive verb phrase
which consists of a verb and its object. Each node is labeled with its syntactic category
(e.g. V for the verb and NP for the object). In SPUD’s use of LTAG, the semantic entities
being described by the node are also indicated, e.g. NP(A) is a noun phrase describing the
entity A.> The leaves with downward arrows (|) indicate substitution sites, where trees of
the right category can be inserted into the tree. The diamond (o) indicates the position of
the lexical item which anchors the tree.

The types of tree shown in Figures 2.6 and 2.7 are called initial or alpha trees; they
provide syntax for the category indicated by the top node. Initial trees fill substitution
sites. The other type of trees, called auxiliary or beta trees, are spliced into initial trees
through the TAG operation of adjunction. For instance, the tree shown in Figure 2.8 is an

auxiliary tree which adds a prepositional phrase to a verb phrase. The foot node, indicated

5The u: that is appended before the leaf node categories indicates that the information in these nodes
can be given (or already known) as opposed to new. This is also unique to SPUD’s use of LTAG.

27

Figure 2.8: Auxiliary tree bVPpp(S,R,E,P,0)

NP (george) N(book) N(floor) NP(O)
| | | NN
George, book, floor, the, N(O)J}

Figure 2.9: Example lexical items

by the asterisk (), must be the same category as the top node and gives the location for
the adjunction operation. In this case, adjunction applies to a node for a verb phrase,
creating a subtree which consists of the verb phrase and the prepositional phrase. The
same method is used to adjoin subordinate clauses to a main clause, as will be shown in
Chapter 5.

As an example of how the tree operations work, consider the sentence “George moved
the book to the floor.” Lexical items needed for this example are shown in Figure 2.9, in
addition to the lexical items past anchoring a simpleS tree (Figure 2.6), move anchoring a
transitive VP tree (Figure 2.7), and to anchoring a b VPpp tree (Figure 2.8). The tree starts
with a single substitution site for the type of tree desired; in this case, the initial tree is
S(s,t,wl,george)] indicating a sentence tree with its semantic indices (to be explained in
Chapter 5). The sentence tree anchored by past is substituted, giving the first tree shown
in Figure 2.10. Next, the tree for the verb phrase anchored by mowe is substituted. At
this point, the auxiliary tree anchored by fo can be adjoined onto the tree. Notice that
this adds an additional verb phrase (VP) node to the tree. These two operations result

in the second tree in Figure 2.10. Finally, the noun phrases can be substituted in and

28

S(s,t,wl,george)

TN

NP(george)l IP(s,t,wl)

winfl(s,t,wl) VP(s;t,wl)]

|
past

4

S(s,t,wl,george)

T

NP(george)l TP (s,t,w1)

N

w:Infl(s,t,wl) VP (s,t,wl)
|
past V(wl) NP(book)|
|

move

(s,t,wl,george)

/\

P(george)l (s,t,wl)
w:Infl(s t,wl) (s,t,wl)
past /\
(s,t,wl) PP(to)

/\/\

V(wl) NP(book)l P(to) NP(floor))
| |

move to

Y

Figure 2.10: Construction of example sentence

S(s,t,wl,george)

TN

NP (george) IP(s,t,wl)
Ge0|rge /\
w:Infl(s,t,wl) VP(s,t,wl)
p;st /\
VP(s,t,wl) PP(to)
TN P
V(wl) NP(book) P(to) NP(floor)

| |
move the N(book)] to the N(floor)|

U
(s,t,wl,george)
g(/\st wl)
George /\
uInﬂstwl) P(s,t,wl)
past /\
(s,t,wl) PP(to)
wmook) b NPGion)
| PN | N

move the N(book) to the N(floor)

| |
book floor

Figure 2.11: Construction of example sentence (continued)

completed (see Figure 2.11). Morphological processing is needed to inflect the verb mowve
to reflect the past tense feature dictated by the past lexical item (which should be erased).
While this is a simple example, it shows how LTAG is used to represent lexical items and

to combine them to form larger syntactic structures.

2.7 Natural Language Generation

“Text generation can be characterized as a process of transforming a message into a
text. This process is successful if, and only if, the reader of the text is able to derive
its intended message. The ultimate criterion of what it means for a text to be good is
thus a cognitive rather than a strictly linguistic one: the easier it is for the reader to
decode the intended message from the text, the better the text will be.”

[Scott and de Souza, 1990, p.47]

This section is meant as an overview of the structure of NLG systems, providing the
framework for discussing how the implementation described in this dissertation compares
with other NLG systems presented in Chapter 6. In addition, this overview brings together
the issues discussed in this chapter and the previous one, by showing how the various topics
fit into the generation process.

A generation system should take (or determine) communicative goals, goals to be
achieved through the communication of information, and produce text which satisfy them.
Generation systems must be given (or plan) the content to be conveyed and perform lexi-
cal choice and surface realization (refer back to Figure 2.5 for an overview of NLG system
architecture). In order to carry out the transformation of goals into text, systems need
a representation of the domain (e.g. concepts, objects, relations, etc.), a lexicon supply-
ing words and their meanings, and a grammar providing ways of combining words into
sentences (and possibly sentences into a discourse). Every system varies in their meth-
ods of content and text planning, lexical choice, and surface realization, and each uses
different domain representations as well as lexicons and grammars. In this dissertation, I
assume that by the time a system is generating a single instruction step, no further con-

tent or text structure planning is needed beyond choosing to use multi-clausal sentences

31

or multiple sentences. So, leaving aside content and text structure planning, I focus my
discussion of generation systems on their domain and lexical representations, their lexical
choice methods and other aspects of their generation algorithms, and the quality of the

texts produced.

Domain and lexical representations encode information about the domain, the lexi-
con, and the connections between the two. Similar to the representation of actions (Section
2.2), domain representation can be done in several formalisms, such as first-order logic,
description logics, and feature structures. A key issue in domain representation is whether
it is independent of linguistic considerations. A domain representation is language-neutral
if it does not contain elements or structures that are required by any particular Natural
Language. A related issue is the mapping of concepts in the domain to words in the lexicon.
A one-to-one mapping between domain concepts and lexical items reduces the flexibility
of generation since a concept will always be described in the same way. If the connection
between concepts and words is many-to-many, there can be many different ways of relating
the same concept in different contexts, precipitating the need for lexical choice. A critical
issue in lexical representation is the inclusion of context in the representation of lexical
items. That is, whether not only the meaning of a word or construction is represented,
but also the context in which it has that meaning. This issue is important in terms of how

lexical choice is done.

Lexical choice and realization algorithms are the tactical (“how to say it” as op-
posed to “what to say”) components of a generation system — they perform linguistic
realization, the transformation of semantics (meaning) into words and constructions. The
variations in lexical choice algorithms were discussed in Section 2.4. While the lexical
choice algorithm is a defining difference between generation systems, several other related
differences exist. For instance, if a generation system uses a lezicalized grammar, one in
which every piece of the grammar is associated with at least one word, then lexical choice
performs the surface realization as well. Without a lexicalized grammar, a separate surface
realization phase is needed to combine the chosen words into legal syntactic structures.

The choice of a lexicalized or non-lexicalized grammar affects the lexical choice algorithm,

32

dictating whether lexical choice will choose words alone or words along with the construc-
tions which they anchor. One final issue is whether backtracking, undoing a previous
choice or decision, is used when legal sentences cannot be generated at first. Backtracking
can occur within the lexical choice algorithm itself, usually when a lexicalized grammar
is used, or during the surface realization phase, at which point the lexical choice phase
must be redone. Finding a mapping from the semantics to a surface realization represents
a search problem and differences in search algorithms are therefore applicable to lexical

choice and generation algorithms.

Assuring the sensitivity, efficiency, and effectiveness of generated texts is essen-
tial for a successful generation system. Texts need to be sensitive to what the hearer
knows. Different texts conveying the same information should be generated for hearers
with different knowledge, tasks, etc. This could include making sure to use only words
which the hearer knows (see [McKeown et al., 1993]) or actions which the hearer is able
to perform. Texts also need to be efficient by avoiding redundancy. In order to produce
efficient texts, the generation system needs to be able to check which of the goals have
been already achieved by the text at various points in the generation process. Among
other benefits, this allows constructions to contribute to more than one goal (see [Stone
and Webber, 1998]). Finally, texts need to be effective. They need to identify referents
(objects, states/conditions, events, and actions) unambiguously and sufficiently to serve
the communicative goals (in the case of instructions, enabling the correct performance of
an action).

As will be discussed in Chapter 6, the issues raised here with respect to the generation
process are addressed to varying degrees by previous NLG systems. None, however, fully
address all of the issues, particularly those of expressing termination information and
generating effective instructions. In the next chapter, the first step in generating effective
instructions is discussed: namely, the study of naturally occurring instructions to determine

how they convey termination information.

33

Chapter 3

Expressing Action Termination

Carrying out instructions relies on having all of the information about the actions in
instructions, especially when to stop performing each action. Action termination informa-
tion, therefore, needs to be available in some form in instructions. To see how instructions
express termination information, I gathered examples of complex actions from several
sources, including an F-16 aircraft maintenance manual and a Reader’s Digest “do-it-
yourself” home maintenance manual. I expected to find that a significant number of the
actions described in the instructions would have explicit expressions of action termination,
since the intent of instructions is to have the reader carry them out. What I found con-
firmed this and, by examining how termination expressions are used in these instructions,
I gained insight into how action termination is expressed for a variety of action and verb
types.

While the most frequent source of termination information in the corpus of examples is
the inherent culmination found in accomplishment and achievement verbs (see Section 2.1),
a third of the instructions (around one thousand) have termination information coming
from sources other than the verb. This means that enough interesting termination expres-
sions are available to draw conclusions from with respect to common ways of expressing
termination outside the verb. Coding each corpus instruction for action type and source
of termination shows how frequently termination expressions appear and with which ac-
tion types they tend to occur. The corpus analysis focuses on certain expressions in more

depth, characterizing them in terms of how they provide termination information and

34

what distinguishes them from other expressions. This sort of characterization is needed
for automating the generation of such expressions correctly, among other tasks.

In the next section, I describe the corpora used for the corpus analysis and in Section
3.2 I show how the corpus is coded. (Appendix B contains a selection of the coded corpus.)
Section 3.3 provides results and analysis of the coded corpus, including detailed analysis
of selected termination expressions. The chapter ends with concluding remarks about how
termination is expressed and how the information gained from the analysis is used in the

rest of this dissertation.

3.1 About the Corpora

The corpora include the Reader’s Digest New Complete Do-It- Yourself Manual [Reader’s
Digest, 1991], a version of the Organizational Maintenance Job Guide (Fuel System Dis-
tribution, USAF Series F-16C/D Aircraft) [USAF, 1988], which is a set of technical orders
for the maintenance of F-16s, and a set of instructions for a virtual mitre saw assembly
line [ITL SIMA, 1997]. This last corpus contains only numbered instructions, with no
paragraph-length sections, and is meant as actions to be carried out by (virtual) workers
on an assembly line. In addition, only the numbered instructions in the other two corpora
are considered. Such step-by-step instructions are recognized as a sub-genre of instructions
manuals by virtue of their distinguishing linguistic characteristics [Hartley and Paris, 1996].
Thus, focusing on the step-by-step portions of the corpora is well-motivated.

Since the corpora are meant to be used as guides to performing maintenance tasks as
well as repairs and initial installations, they contain examples of concrete actions and the
subset of step-by-step instructions provides imperative, not descriptive, sentences about
the actions. The complexity of the sentences is restricted since each instruction step, i.e.
set of sentences about a subtask, describes only one or two actions at a time. However,
the variety of linguistic constructions (ways of expressing information) is large enough for
the purpose of the corpus study.

The step-by-step subset of the corpora contains 3282 imperative main clause verb

phrases (not necessarily sentences since conjoined main clauses are treated as two separate

35

main clauses). Many of the instructions also contain subordinate clauses, which means
that all of the verb phrases in the corpus outnumber just the main clause verb phrases. As
described in the next section, each verb phrase, whether main or subordinate, is coded to
indicate its type, its source of termination information, and its relationship to other verb

phrases.

3.2 Methodology

The purpose of the corpus analysis is to identify sources (e.g. particular linguistic con-
structions) of termination information in maintenance instructions. The corpus analysis is
not meant to discover exactly how termination sources, both linguistic and non-linguistic,
provide termination information or how multiple termination sources interact. The coding
of the corpus is kept simple, especially since it is done entirely by hand.

The simplest source of termination information is the verb itself (see Section 2.1). Verbs
such as remove and open represent actions that have inherent culmination. Since simpler
is better in Gricean terms [Grice, 1975], it is not unreasonable to expect that verbs will
carry most of the burden of conveying termination information. However, when verbs for
those actions which do not have inherent termination, such as turn and slide, are used,
termination information must come from outside the verb. In these cases, termination
information can from arguments of the verb (required or not) and from additional phrases
and clauses. Having one verb phrase is simpler than having multiple verb phrases, so
termination sources involving just one verb phrase are expected to be preferred, when
possible, over multiple verb phrases. In general, information (whether about actions or
not) is expected to be presented in the simplest and clearest way possible.

With these observations and expectations as a guide, the corpus is coded as follows.
Each imperative verb phrase, whether main or subordinate, is given one of the following

main codes:

IC (Inherent Culmination) The verb has inherent culmination. Culmination is defined
by the termination of an action or event accompanied by a characteristic change of

state (see Section 2.1). Therefore, verbs with inherent culmination (such as remove

36

and open) have termination information. The following examples illustrate IC verb

phrases:'

(10) a. Check fuse or circuit breaker box; reset tripped breaker or replace
blown fuse. [Reader’s Digest, 1991] ICIC.IC

b. Remove safety wire and disconnect two hydraulic tubes from FFP

hydraulic motor. [USAF, 1988] IC,IC

c. Get a trunnion and set it in the fixture. [ITL SIMA, 1997] ICIC

AC (Acquired Culmination) The verb phrase acquires culmination from some source
other than the verb. The acquired culmination comes from the combination of the
verb and its arguments and/or additional phrases and clauses, but the verb by itself
does not have culmination. Since culmination is acquired from somewhere other than
the verb, additional codes (described later) appear in the coding of the following

examples:?
(11) a. Glue panels together with white or yellow glue. ACJadv]
b. Apply leak detection compound around fuel tank access panel. AC[pp]
c. Press the 2 buttons at the same time to press the parts together.

AC[pc-to:AC[adv]]

AT (Acquired Termination) The verb phrase acquires only termination (i.e. it does
not gain a characteristic change of state) from some additional phrase or clause; the
verb does not have any termination associated with it. For example:

(12) a. Pull in one direction to refine cutting edge. AT[pc-to:IC]
b. Bleed until fluid stream is free of air. AT [until]

c. Push hard when putting the armature into the gear case. AT[when:IC]|

'From here on, examples from the corpus will follow the same pattern (unless otherwise noted), with a
being from [Reader’s Digest, 1991], b being from [USAF, 1988], and ¢ being from [ITL SIMA, 1997]. The
coding of each verb phrase in an example is given, in order, in the list of codes following the example.

2When an additional clause has an action that is meant to be accomplished (as in a purpose clause),
the coding of verb phrase that appears in the additional clause is given after the code for the additional
clause and a colon.

37

In addition to these main codes, other codes indicate the additional phrases and clauses
which appear with verb phrases. Multiple additional codes can appear with a main code.

The codes for additional phrases within a verb phrase are:

p (verb particle) — The verb and a verb particle together have culmination or termination
information. Verb particles can alter a verb’s type so that the verb with the particle
could be considered a separate verb, but verb phrases are coded based on the verb

without its particle. Some examples include:

(13) a. Take up any water soaked carpeting and the padding underneath. IC|p]

b. Turn off air source. ACJp]
c. Screw in the third set screw. AC|p]
arg (verb arguments) This code indicates that a verb argument other than a prepo-

sitional phrase (see the next code) provides culmination or termination information
in conjunction with the verb. For instance:

(14) a. Cut other pieces 3 1/2 in. shorter than long pieces. AC]arg]

b. Apply 60-70 psig air pressure to ground air service connector. AC|[arg]

c. Lower the arm. AC]Jarg]

pp (prepositional phrase) A prepositional phrase in a verb phrase gives culmination

or termination to the verb phrase. Here are some examples:

(15) a. Fill a deep hole with gravel to within 4 in. of surface. IC[pp]
b. Remove coupling and slide sleeve on outlet tube. IC,AC|pp]
c. Slip an O-ring onto the locking pin. AC|pp]

adv (adverb) An adverb or adverbial phrase in a verb phrase provides culmination or

termination information. Examples include:

(16) a. Insert a bit fully into the chuck. IC[adyv]
b. Screw boltheads [sic] flush with surface of protective frame. AC[adv,pp]

c. Spray and wipe the unit clean. AClJoa], AC|adv]

38

Additional subordinate clauses are coded as to their type:?

pc-z (purpose clause using lexical item x) — A clause expressing a purpose-like relation
between actions provides culmination or termination information to a main verb
phrase. This clause need not be the linguistically-proper purpose clause of the form
“to VP” (see Section 2.4). The x in the code represents the lexical item used in the
purpose clause: to, as in the standard purpose clause; by, for the means clause (as
it is linguistically named); and st, standing for such that or so that. Examples of

purpose clause codes are:

(17) a. Mix mortar (p.165) so that it is a little stiffer than bricklaying mortar.
AC|pc-st]
b. Depress bleed valve sufficiently {0 obtain stream of fluid flow.

AT[pc-to:IC]

c. Adjust the bevel pointer by tapping on it with a screwdriver until it

points to 45 degrees. AC]|pc-by: AT [until]]

Notice that for to and by clauses, the subordinate verb phrase is also coded.

Means clauses are included in the code for purpose clauses because they express a
purpose-like relation, namely that doing the actions in the subordinate by clause
achieves the action in the main clause. Thus they indirectly express a purpose and

are included with purpose clauses.

fa (free adjunct clause) Related to the purpose clause since they often convey purpose,
free adjunct clauses can provide or modify culmination or termination information or
modify the manner of the action by indicating a concurrent or purposive action for
the action in the main clause. The following are some examples, all from [Reader’s

Digest, 1991]:

(18) a. Place blade assembly (bevel down) on the frog, engaging lateral ad-
justing lever. IC[fa:IC]

3Other types of additional clauses are also coded for, such as before, after, when, while, as, and for, but
they are not addressed here as they appear in less than one percent of the coded corpus.

39

b. Then drill a shank hole, stopping at tape. AC[fa:IC]|

c. With firm pressure, draw round shank screwdriver along edge, forming

flat, even burr. AT[pp,fa:IC]|

Free adjuncts are complex constructions, which may explain why they are only found

in the more complex portion of the corpus, namely [Reader’s Digest, 1991].

until (until clause) — An until clause is a simple way to convey termination for the action
in a verb phrase. In the case of instructions, the meaning of until is that an action
is performed up to the time in which the state of the world expressed in the until
clause comes into being. (For actions that inherently have culmination, adding an

until clause changes the culmination.) For example:

(19) a. Drill through assembled (but unglued) joint until bit just touches tenon.
ACJpp,until]
b. (C,D) Monitor fuel indicator until indicator reads 150-400 pounds in
each reservoir. AT [until]
c. While holding the brush in, insert it into the slots of the field case until
the brush is free to pop out and make contact with the commutator.
IC[while: ACJoa],until]
Finally, the code oa (other action) indicates that termination information for an action

is provided through an inferable but non-lexicalized connection with another action in the

instruction step. For example:*

(20) a. Rotate pipe slowly and tap chisel with hammer until pipe breaks off.

AT]oa], AT [until]

b. Slide valve aft and remove. AClJoa],IC

c. Get a base assembly and lock it down on the table by pushing the button.

ICIC[pc-by:ACloal]

“To simplify the coding process, not to mention the notation, the action which provides the termination
information is not indicated as part of the oa code. In the last example, the pushing action acquires its
culmination from the accomplishment of the locking action but this is not noted explicitly in the coding.

40

Code | Description

AC Verb phrase Acquires Culmination

AT Verb phrase Acquires Termination

IC Verb phrase has Inherent Culmination

adv | An adverb adds or modifies culmination/termination

arg Verb argument contributes to termination

fa A free adjunct contributes to culmination/termination
oa Relationship to other action provides termination
pc-z | Termination from purpose clause using lexical item z
P Verb particle indicates culmination/termination

PP A prepositional phrase supplies termination

until | An until clause provides termination

Table 3.1: Summary of codes used in corpus analysis

All of the codes described above are summarized (alphabetically for reference) in Table

3.1. The next section reveals the results of the coding.

3.3 Results and Analysis

The results of the coding bears out the hypothesis stated in the previous section: simple
sources of termination information are more frequent. Overall, IC verb phrases represent
two-thirds of the main clause verb phrases (see Table 3.2) and the remaining third of the
corpus involves main clause verb phrases which acquire at least termination information
(AC and AT verb phrases). The frequency of the additional codes (Table 3.3) shows
that the simpler ways of adding termination information are more frequent: pp and arg
do not involve an additional clause. Table 3.3 lists the frequency of the additional codes
over all of the verb phrase types as well as the frequency with only the AC and AT verb
phrases. The fact that purpose clauses are frequent stems from their multi-purpose nature,
as discussed later in Section 3.3.3.

The distributions of codes for the different corpora sources show their different styles,
with the main difference being the percentage of IC verb phrases (see Table 3.4). The

F-16 corpus has the highest percentage (83%) of these, the simplest source of termination

41

Main VP code | Frequency (%)
C 2188 (66.7)
AC 869 (26.4)
AT 225 (6.9)

Table 3.2: Overall Frequency of Main Clause Verb Phrase Codes

Add’l Overall In AC/AT
code | Frequency (%) | Frequency (%)
pPp 433 (13.2) 423 (38.7)
pe 308 (9.4) 202 (18.5)
arg 222 (6.8) 222 (20.3)
p 150 (4.6) 39 (3.6)
oa 91 (2.8) 91 (8.3)
adv 90 (27) 63 (5.8)
fa 79 (2.4) 39 (3.6)
until 55 (1.7) 47 (4.3)

Table 3.3: Frequency of Additional Codes

information. As a technical order manual whose instructions must be carried out as if
they were direct military orders, the F-16 corpus reflects the philosophy that the easier
it is to understand what needs to be done the better, since any mistakes could be costly.
The Reader’s Digest (RD) corpus has the widest range of constructions in its instructions,
reflecting the variety of tasks that it encompasses. It has the highest percentage (45%) of
combined AC and AT verb phrases, indicating the relative balance between the main verb
phrase types. One similarity between the corpora is that they all have roughly the same
percentage (between 12% and 15%) of verb phrases appearing with pp codes. However,
within the AC verb phrases, the appearance of pp codes varies widely (only 34% in the
Reader’s Digest and 90% in the F-16 corpus). The distribution of codes gives a sense of
the goals of the different corpora, i.e. the F-16 corpus is simple and straightforward so
that following the instructions easy while the Reader’s Digest uses powerful constructions

to express quickly the most information possible.

42

Code | RD | F-16 | SIMA Code | RD | F-16 | SIMA Code | RD | F-16 | SIMA
IC 919 | 1075 194 AC 587 181 101 AT 188 27 10
pc 98 2 6 pp | 204 164 47 pc 93 11 4
fa | 40 0 0 arg | 201 5 14 oa | 44 3 2
p 33 0 0 p 91 5 20 until 25 12 1
adv 27 0 0 pc 81 5 8 fa 11 0 0
9)8) 6 4 0 adv 57 1 4 PP 8 0 0
until 6 1 1 fa 28 0 0
oa 27 3 11
until 9 0 0

Table 3.4: Code frequencies by corpora and main code

The fact that additional codes appear with IC verb phrases, especially in the Reader’s
Digest corpus, indicates the possibility of modifying the inherent culmination information
that comes from verbs. In addition, multiple additional codes can appear with one main
verb phrase, all interacting to provide the termination information for an action. The
modifications and interactions are not considered in the analysis and Table 3.4 shows the
total number of occurrences of codes, regardless of whether they are in combination with
others. In the discussion that follows about use of constructions indicated by additional

codes, co-occurrence with other constructions is not addressed.

3.3.1 The use of verb arguments, particles, adverbs, and free adjuncts

Verb particles, adverbs, and free adjuncts are not relied on frequently to provide action
termination, possibly because the interaction between the verb and these other components
is complex. Verb arguments, appearing as a source of termination in only 7% of the
instructions overall (but 20% of the AC verb phrases), are an especially complex source of
termination information. How verbs and their objects can combine to give a culmination
depends on the particular verb, the action it represents, and the type of its objects. The
termination information from adverbs also relies on the particular verb, although certain
adverbs can provide all of the termination information. Free adjuncts are very complex,

relying on complicated relationships between the main action and the subordinate action

43

in the free adjunct clause. Finally, verb particles can change the type of the verb and,
together with the verb, can act as a new verb, usually one with inherent culmination. The
complexity of the interaction between verb and its arguments, adverbs, and free adjuncts,
as well as the indivisible behavior of verbs and their particles, suggests that they are not
termination sources to focus on when looking for semantically simple (and therefore more

readily implementable) ways of expressing termination.

3.3.2 The use of prepositional phrases

The greatest use of prepositional phrases comes in the AC verb phrases; their use in the
other verb phrase types is infrequent. Prepositional phrases can provide culmination in
terms of the endpoint of a path or a resulting configuration. They mostly appear with verbs
describing motion which have no inherent culmination ([Badler et al, 1998; Bleam et al.,
1998] demonstrate this, especially for the F-16 corpus [USAF, 1988]). Both the endpoint
of a path and a resulting configuration express a culmination: a path endpoint describes
a new location for an object and a resulting configuration correlates with a more general
change of state (also shown by [Dang et al., 1998]). In fact, research in lexical semantics
such as [Dang et al., 1997; Palmer et al., 1997] has shown that prepositional phrases are
used to extend the meaning of many verbs in a regular way; that is, semantic information
(e.g. an end configuration) correlates with syntactic behavior (e.g. prepositional phrases).
These facts rule out the frequent use of prepositional phrases with verb phrases that
already have a culmination or only acquire termination. Based on their most frequent use,
then, prepositional phrases can be characterized as providing an action with a culmination

involving an end configuration (geometric, spatial, or otherwise).

3.3.3 The use of purpose clauses

Much work has been done in the area of characterizing purpose and means clauses (see
Section 2.4). The corpus analysis presented here agrees with many of the observations made
previously. Since purpose clauses are popular for a variety of uses, they are found in all
three verb phrase types (see Table 3.5). Their use in IC verb phrases is to provide manner

information or to modify the culmination provided inherently by refining or clarifying it. In

44

Code | % w/pc
IC 4.8
AC 10.8
AT 48.0

Table 3.5: Co-occurrence of verb phrase types with purpose clauses

% to by st
Overall 8.4 | 9.7| 5.5
in main IC VP | 76.4 | 23.6 0.0
in main AC VP | 78.7 | 5.3 | 15.9
in main AT VP | 99.1 0.0 1.8

Table 3.6: Purpose clause distribution by lexical item and main verb phrase code

AC verb phrases, they are less frequent than other types of additional phrases and clauses;
motion verbs that appear in AC verb phrases have simpler choices, such as prepositional
phrases, for gaining culmination information. For AT verb phrases, purpose clauses are
the most frequent way of acquiring termination information. By giving the purpose for
doing an action that does not inherently have termination, the action’s termination is
understood to coincide with the fulfillment of the purpose. In this way, both the high-level
action (i.e. the purpose) and how to accomplish it are given in the same sentence, making
an efficient presentation of information.

The kind of purpose clause also varies with the verb phrase type it co-occurs with. The
most frequent kind of purpose clause is the standard fo purpose clause, however as shown
in Table 3.6, the by or means clause (see Sections 3.2 and 3.3.3) is also well-used. Below I
present examples from the corpus and discuss possible formalizations of the use of purpose
and means clauses.

Instructions which use means clauses present the task to be accomplished (i.e. the
purpose) first and then the means (i.e. the actions) by which it can be accomplished.

This can be seen in the examples, all from [Reader’s Digest, 1991], shown in Figure 3.1.°

SRemember that the code for a subordinate verb phrase appears after the additional code for the type

45

(21) a. Empty toilet bowls and tanks by siphoning or bailing and sponging.
IC[pc-by:ACJoal]

b. Assemble horse by sliding legs into channels formed by saddle’s stop blocks.
IC[pc-by:ACIpp]]

c. Level bricks by tapping lightly with a rubber mallet. IC[pc-by:AToal]

d. To check the wall’s batter (slope), make a batter gauge by nailing three 1
x 2’s to form a 90 degree angle. IC[pc-to:IC,pe-by: AC[pe-to:IC]]

e. Unscrew float by turning it counterclockwise on float arm.
IC[pc-by:AT|oal]

Figure 3.1: Examples of by purpose (means) clauses

The task is (nearly) always one with an inherent culmination and the means are (nearly)
always actions which acquire culmination or termination, usually from the task for which
they are done. Using a means clause is a straight-forward way of presenting a high-level
action and then its sub-actions.

Standard purpose clauses, those introduced with to, can appear fronted or non-fronted
(see the discussion of [Thompson, 1985] in Section 2.4). In the case of the non-fronted
purpose clauses, they can provide the manner or termination (or both) of the action they
modify in addition to a purpose. Figure 3.2 gives some examples, again all from [Reader’s
Digest, 1991], of non-fronted purpose clauses. In these cases, the actions expressed in
the purpose clause are usually more abstract than those expressed in the main clause of
instructions using means clauses. The low-level actions are essential to accomplishing the
task since they provide concrete details and thus are placed before the purpose clause.

In contrast to the non-fronted purpose clauses, fronted purpose clauses place high-
level actions before the lower-level actions which accomplish them (see Figure 3.3). The
purpose action in the fronted purpose clause is even more abstract than in the non-fronted

purpose clause, describing a generic action or overarching goal. In addition, the lower-level

of the higher clause. Thus, pc-t0:IC means that to purpose clause contains an IC verb phrase.

46

(22) a. Glue and nail one long and one short piece to form a unit.
ACJoa],AC[pc-to:IC]

Align all edges; then apply clamps and weights {0 maintain position until

glue dries. IC,AT pc-to: AT [until]]
b. Pull in one direction to refine cutting edge. AT[pc-to:IC]
Set blade to cut through work and barely into scrap. IC[pc-to:AC[pp]]

Figure 3.2: Examples of (non-fronted) to purpose clauses

actions are either two (or more) in number or complicated. The difference between fronted
purpose clauses and means clauses, which also put the high-level action first, is that the
high-level action in fronted purpose clauses is more abstract and serves as an introduction

to a complicated sequence of actions to achieve the purpose.

3.3.4 The use of until clauses

The use of until clauses for providing termination information is not as common as ex-
pected. They are a simple way of conveying termination, however that is all they typically
do. When another phrasing is possible, such as a prepositional phrase or a purpose clause,
an until clause is not used. For instance, the instruction Turn the dial until it is at the
ON position would not be used instead of the instruction Turn the dial to the ON position,
even though the former conveys the proper termination. Unlike purpose clauses or prepo-
sitional phrases, an until clause does not necessarily state explicit connections between the
action and its termination information (e.g. a purpose relation or an end configuration of
a manipulated object). An until clause is capable of stating a completely unrelated termi-
nation condition for an action, as in “Do your homework until your mother gets home.”
Although no such examples appear in the corpus, the reader must still do extra reasoning
to understand how the termination condition in the until clause relates to the action in
the main clause. This burden on the reader could explain why such a simple termination

source is infrequent, used in only 1.7% of the corpus despite appearing with nearly half of

47

. To fix small blisters in linoleum or soft vinyl flooring, puncture them with

a nail, and pump epoxy through nail hole, using a glue gun (p.90) with a
syringe, or hypodermic, nozzle. IC[pc-to:IC],AC[pp,pc-to:IC]|

. To help you keep the drill straight, position or clamp a try square or

combination square near the drill and keep the drill parallel to the square.
IC[pc-to: ACJoa]],ACJoa],ACJoa]

. To make a hole of the depth you want, use a commercial drill stop or gauge,

or wrap a piece of masking tape at the appropriate height on the bit.
AC[pc-to:IC],IC[pc-to:IC]

. To use circular saw for cutting grooves and dadoes (p.102), mark the width

and depth of the cut. IC[pc-to:ACJarg]]

. To bend thick plywood, make saw kerfs just below the face ply at 3/16 to

1/4 in. intervals. IC[pc-to:ACJoal]

. To mark tails, first scribe shoulder line 1/32 in. wider than pin piece’s

thickness. ACJpc-to:IC,arg]

. To cut joint fingers, place stock against guide block and carefully push

entire assembly over turning dado head. IC[pc-to:ACJarg]],AC[pp]

Figure 3.3: Examples of fronted to purpose clauses

48

the F-16 AT verb phrases.

3.4 Conclusion

The focus of this corpus analysis has been on the more frequent and semantically simpler
sources of termination and how they are used. These include prepositional phrases for
expressing the endpoint of a motion’s path, purpose clauses for tying low-level actions
with high-level ones, and until clauses for stating termination conditions of actions. These
have been analyzed in detail since they are semantically simpler than other termination
sources, such as verb arguments and adverbs. However, except for until clauses, they
are common in maintenance instructions and thus provide a good basis for generating
termination expressions.

The corpus analysis has been used both in the development of an action representation
which supports termination information as well as the formulation of rules for determining
whether a particular action has termination information. These are described in the next
chapter. In Chapter 5, the encoding of how additional phrases and clauses contribute
particular action information is shown and used by the Natural Language generator to

generate complex instructions involving expressions of action termination.

49

Chapter 4

Representing Objects, Actions,
and Agent Expertise

The Natural Language generator SPUD (Sentence Planning Using Descriptions) [Stone,
1998] reasons about Natural Language Generation (NLG) tasks using a logic theorem-
prover [Stone, 1997], presenting the opportunity to develop domain knowledge which is
independently-motivated. Implementing a domain model in SPUD is much like writing a
logic program since it uses modal first-order logic, a combination of first-order logic and
modal logic (see Section 2.3). Therefore, SPUD can be seen as a programming environment
for implementing domains as well as generating text.

The implemented domain model encompasses several sources of information, including
information about objects, actions, and agents. Object knowledge includes information
about objects’ properties and connections to other objects in the domain. Action knowl-
edge represents general and specific information about actions in the domain, including
how actions interact with other aspects of the domain. Agent knowledge reflects what
agents and types of agents are assumed to know about the domain and its actions. In
particular, it models different agent expertise levels. After the description of the example
domain considered in this dissertation, the rest of the chapter discusses the representation

of the domain knowledge in SPUD.

50

D
normal
range

=

Pump Pressure

m Pur
Pump
Pressure Dial
Pump Control
Lever

Figure 4.1: A control panel for a pump

4.1 The Example Domain

Inspired by the tasks found in the F-16 aircraft maintenance instruction manual (see the
previous chapter), the example domain involves a control panel for a pump (see Figure
4.1). The control panel has a lever which resets the pump, a button which controls the
on/off state of the pump, a light which indicates the pump’s state, a dial which controls
the pump’s pressure, and a gauge that indicates the pump’s pressure. The panel also has
a cover which is held in place by a screw.

This domain provides varied tasks which allows a wide range of action and agent
information. Tasks in the domain form a collection actions and sub-actions, of which
Figure 4.2 reflects a small portion. The actions can be high-level, such as normalizing the
pump’s pressure, and have sub-actions which are lower-level, such as turning the dial. High-
level actions typically have inherent culmination (see Section 2.1) whereas low-level actions
usually do not. Therefore, a wide variety of termination information, action information
which indicates when to stop performing an action, is needed for many actions in the
domain. In addition, less experienced agents are less likely to know how to perform high-
level actions without explicit instructions, but they are likely to know how to perform
low-level actions on their own. Thus, the knowledge that agents can be assumed to have

about actions in the domain matches the wide array of action information possible in the

o1

Restart pump

Open panel Normalize pump pressure Start pump
Remove screw Turn dia clockwise until... Reset pump Press ON button
Turn screw counterclockwise until... Raise lever to RESET position

Figure 4.2: Portion of action/sub-action tree in the control panel domain

domain. Before action and agent knowledge can be represented, however, information

about objects and their roles in the domain must be specified.

4.2 Object Information

Object information includes information about specific objects in the domain as well as
general information about classes of objects. Each of the specific objects, physical or
abstract, must be described in terms of its type, its place in a part/whole tree, and its
properties, including its connections to other objects in the domain. Physical objects are
those that can be directly manipulated, such as screws, dials, and levers. Abstract objects
can be identified in the domain, but cannot be directly manipulated. (Examples of abstract
objects will be given later.)

For example, consider the screw, called screwl, which holds the cover on the panel.
The first two pieces of knowledge in Figure 4.3 indicate screwl’s type. It is a physical
object and its type is a standard screw.! Since the representation is a modal FOL (mFOL),
the modal status of each piece of information needs to be given. In this case the modal
status of each piece is that of common knowledge, indicated by the C modal operator,
meaning that the information is assumed to be known by all agents in the domain. (More

will be said about modal operators in Section 4.4.1.) The third item indicates the screw’s

!The representation of objects presented here is only one possible way among many. The specific
representation chosen in this dissertation is not essential to the results.

52

physicalObj(screwl).

type(screwl, standardScrew).

part0f (screwl, coverl).

property(screwl, state, oneOf(tight,loose)).
property(screwl, defaultLocation, in(holel)).
property(screwl, loosenDir, ccw).
property(screwl, tightenDir, cw).
property(screwl, turnable, true).
property(screwl, unique, true).

oo N Ne N

Figure 4.3: Knowledge about the screw

pump
panel/\
cover button lever
scr|ew re|set position

Figure 4.4: Part/whole object tree in the control panel domain

relationship to other objects in the domain, namely as part of the cover which in turn is
part of the panel. Figure 4.4 shows a portion of the part/whole tree which is defined by
the part0f and hasPart predicates.

The remaining items of information in Figure 4.3 give static and dynamic properties
of the screw. The state of an object is a dynamic property and, in this case, two states are
possible: tight or loose. Another dynamic property of a movable object is its current
location, but since this can range over all possible locations in the domain, it is left as
an implied property. Unlike an object’s current location, its default location, or where
it would be assumed to be given no other information, is a fixed property; the screw’s
default location is in the hole (holel). (Locations are simply represented by a relation
name, such as in, on, or at, combined with the object identifier, e.g. in(holel)). Two

more fixed properties, namely those for the loosening and tightening directions, are also

93

specified (counterclockwise and clockwise, respectively). The last two pieces of information
about the screw are also static properties: turnable, indicating that it can be turned, and
unique, indicating that it is the only such object (i.e. with the exact same properties) in
the domain.

In addition to this statement-like knowledge, knowledge can be formulated as rules in
mFOL. For instance, a rule can state that all objects with the type standardScrew also

are of type screw:?

*0 C(type(0, standardScrew) -> type(0, screw)).

This rule is used to reason that standard screws are screws.? For instance, using this rule,
the fact type(screwl,screw) can be proven from the above knowledge about screwl.
This allows other knowledge rules to state general properties of all screws without having
to have a separate rule for each subtype.

The object information shown in Figure 4.3 is typical of most physical objects in the
domain. However, the example does not demonstrate how connections between objects
are represented. One connection is whether an object controls or is controlled by another
object. For instance, the dial is one source of control of the pump’s pressure. Thus, in the

representation of the dial, it would have the following property:
C property(diall, controls, pressurel).

indicating that it exerts control over the abstract object, pressurel. Likewise, in the

representation of the pump’s pressure, the following appears:
C property(pressurel, controlSource, diall).

This states that the pump’s pressure is controlled by the dial. The connections between
objects can be represented and reasoned about by the theorem-prover using these types of
properties. While these types of properties are not used in the current work, they would
be needed for more sophisticated reasoning about the domain and thus are included here

for further work.

?x0 means YO and -> is logical implication (—).
3 Again, this is only one possible way to reason about object types. Such details are not critical to, nor
a focus of, this dissertation.

54

abstract0Obj(restPosl).

type(resetPosl, position).

part0f (resetPosl, leverl).

property(resetPosl, label, reset).
property(resetPosl, location, above(defaultPosl)).
property(resetPosl, movable, false).
property(resetPosl, unique, true).

QOO

Figure 4.5: Object information for the lever’s “RESET” position

Abstract objects include objects that are not usually thought of as objects. As noted
above, the pump’s pressure is represented as an abstract object since it is not directly
manipulable. Other abstract objects include the “RESET” lever position and the “nor-
mal” range of the gauge. These are non-manipulable but identifiable (i.e. capable of being
referred to) aspects of the domain. Figure 4.5 shows the representation of the “RESET”
lever position. A property which appears in its representation which has not been men-
tioned previously is the label property, which indicates the identifying label of the object.
This property is also used for physical objects with labels, such as the “ON” button.

The full representation of all of the objects in the domain and the rules to reason about

them are given in Appendix A.4.

4.3 Action Information

Through the study of maintenance activities with a mixed group of human modeling
and simulation (HMS) researchers and Natural Language researchers, action information
needed for both purposes emerged. Work by others in the area of verb semantics [Badler et
al, 1998; Dang et al., 1997; Dang et al., 1998] as well as the informational requirements of
simulating agents carrying out maintenance activities [Badler et al, 1997], along with the
analysis of maintenance instructions, contributed to the development of the action repre-
sentation described below. While this dissertation work does not take advantage of all the

capabilities of the action representation, I present its full extent (so far) in order to hint

95

at the range of actions and events it can represent. The rules needed for reasoning about
action information in terms of termination and concreteness given this representation are

discussed in 4.3.2 and 4.3.3, respectively.

4.3.1 Parameterized Action Representation (PAR)

For actions that are to be carried out or otherwise interpreted, their specification must
include all of the necessary components. A representation called PAR (Parameterized
Action Representation) has been developed with this in mind. It is meant to be a com-
mon representation for animating virtual agents as well as generating Natural Language
instructions [Badler et al., 1998; Badler et al., 1999]. The structure of PAR is shown in
Figure 4.6 and each component is explained below.* Those components appearing with an

asterisk (*) are not further addressed in this dissertation.

* Applicability condition is a boolean expression of conditions (conditions conjoined
with logical ands and ors) which must be true in order for the action to be appropriate
to perform. These conditions generally have to do with certain properties of the
objects, abilities of the agent, and other unchangeable or uncontrollable aspects of the
environment. Unlike a precondition (see below), it would be impossible or impractical

to try to satisfy the applicability condition as a subgoal before performing the action.
During is the time interval in which the action takes place.
Result is the time interval after the action is performed.
Participants are those entities participating in the action.

Agent is the animate entity who performs the action. The representation of the

agent can include its physical attributes and its capabilities.

Objects is the list of entities/objects involved in the action. The representation of
objects can include physical properties such as geometry and current state as
well as actions defined for the objects. It is possible that the list could associate

a role, such as instrument, along with an entity.

*Although PAR appears here as a feature-structure representation, translation into mFOL is straight-
forward as described later.

o6

PAR
applicability condition:
during:
result:

CONDI Tl ON bool - exp

TI ME- | NT
TI ME- | NT

o _ agent: AGENT
participants: objects: OBJECT 1 st

cor e semantics:

precondition: CONDI Tl ON bool - exp
postcondition: CONDI TI ON bool - exp
object: OBJECT
motion: caused: BOCLEAN
translational: BOCLEAN
| rotational: BOOLEAN
] object: OBJECT
force: point of contact: OBJECT LOCATI ON
direction: DI RECTI ON
path: start: LOCATI ON
end: LOCATI ON
| distance: LENGTH
achieve: CONDI Tl ON bool - exp
purpose: generate: PAR
7enable: PAR
termination: ~ CONDI TI ON bool - exp
duration: LENGTH
manner: MANNER
subactions: PAR constraint-graph
previous action: PAR
next action: PAR
concurrent action: PAR

PAR

parent action:

Figure 4.6: The structure of PAR

o7

Core semantics represents the primary components of the action.

*Precondition is a boolean expression of conditions that must be satisfied before
attempting the action, in order for the action to be successful. Although disjunc-
tions are possible, it is generally just a condition or conjunction of conditions.
(The use of preconditions is the traditional method of subgoaling that is found
in planning.)

Postcondition is a boolean expression of conditions which holds after the action is
done (i.e. in the result time interval). It generally predicates changes of state

in object properties and/or relations between objects.

Motion represents any motion component of the action. It is a substructure which
indicates the object undergoing the motion and whether the motion is trans-
lational or rotational. (For the motion of objects by an agent, the caused
component of the motion substructure will always be true. Since this disserta-
tion addresses actions done by agents, the caused component is assumed to be

true in all actions without being explicitly included.)

Force represents any explicit force component of the action. It is a substructure
containing the object to which the force is applied and the point of contact. (If
the point of contact is omitted, a default point of contact can be assumed to

come from the properties of the object.)

Path represents path information for the action.

Direction gives the direction of any motion or force. Directions can be absolute or

relative to an object or agent.

*Start indicates the starting location of the motion. Locations are generally repre-

sented by a relation (e.g. on, at) with an object (see the previous section).
End indicates the end location of the motion.

*Distance indicates the length along the path. A length consists of units (e.g.

miles, degrees) and a quantity (e.g. 90).

o8

Purpose indicates the purpose of the action. The purpose can include a boolean expres-
sion of conditions to achieve (make true), an action to generate, and/or an action

to enable.?

*Manner indicates any constraints, not otherwise represented, on the manner in which

the action is to be done.

*Termination indicates any termination conditions which would not be otherwise cov-
ered (e.g. by a post-condition, path endpoint, or purpose). This is needed for actions
in which there is no relation between the action and the conditions except that the

action is terminated when the conditions become true.

*Duration indicates any explicit duration for the action. It is similar to the distance
component of path in that has units and a quantity. Although the units used for
duration are usually those for time (e.g. seconds, minutes) and iteration, durations

involving spatial units are also possible (e.g. “Drive for ten miles”).

Subactions represents the breakdown of the action into its sub-steps. It is a collection
of actions connected in a graph structure which indicates the temporal relationships
(if any) between the actions (e.g. whether two actions are to be done sequentially,

in parallel, etc.). (For this dissertation, sub-actions are always sequential.)
Previous action is an action done immediately before the action.
Next action is an action which is done immediately after the action.

*Concurrent action is an action which is done in parallel with the action (as indicated

by the parent action’s sub-actions graph).

Parent action is the action of which the particular action is a sub-step.

Translation of the PAR feature-structure (FS) representation into mFOL for SPUD
could be automated. The FS representation is a simple, commonly used representation

and, as such, is a good representation for knowledge that is used across applications.

SFor this implementation, the purpose of maintaining some condition can be loosely treated as an action
to generate. For further work, PAR should be expanded to include maintenance purposes.

99

(id = ual i
during = t_.1.1_1
result = t_1.1.2
agent = u
objects = (screwl, instrument(screwdriver))}
object = screwl
type = rotational }

participants = {

X motion = {
core semantics =
postcondition = configuration(screwl, state(loose))
path = [direction = ccw
previous action = nil
Lnext action = ua2

parent = oal

during(ual, t_1_1.1).

result(ual, t_1.1.2).

agent (ual, u).

instrument (ual, screwdriver).

motion(ual, screwl, rotational).

pathDir(ual, ccw).

postcondition(ual, configuration(screwl, state(loose))).
prevAction(ual, nil).

nextAction(ual, ua2).

M nnwnmnmwn unun nnmw Qw0

parent (ual, oal).

Figure 4.7: PAR example and its translation into mFOL

Creating mFOL statements from PAR is straightforward in general: FS attributes become
predicates, action identifiers become the first argument to the predicates, and attribute
values become additional arguments to the predicates.® For example, Figure 4.7 shows
a PAR example for an action and its translation into mFOL. Since agents are not all-
knowing, actions need to be conveyed to them by the system; therefore, in the translation
to mFOL, all but one piece of action information (namely, the fact that each action has
a time interval following it) is listed as system knowledge using the modal operator S

(described in the next section).

SFor reasons of efficiency and clarity of the implementation, the translation process is not purely syntactic
although there is nothing fundamental to keep it from being so. For instance, adhering to the layered
structure of PAR is not strictly necessary. A pseudo-code algorithm for the translation process used in this
implementation is given in Appendix C.

60

*P *R C(starts(R,P) -> subinterval(R,P)).
*P *R1 *R2 C(meets(R2,R1), subinterval(R1,P) -> subinterval(R2,P)).

Figure 4.8: Rules for time subintervals

Since time intervals are associated with actions (i.e. the during and result slots in
PAR), knowledge of how time intervals interact needs to be included in the domain knowl-
edge. For the purposes of this dissertation, this knowledge includes three relationships
between the time intervals (see Section 2.1). For the example action given in Figure 4.7,

the following statements are also included in the action information:

S starts(t_1_1_1, t_1_1).

S meets(t_1_1_2, t_1_1_1).

S finishes(t_1_1_2, t_1_1).

to represent the time interval structure in which an interval (t_1_1) has two subintervals
which are contiguous.” Knowledge about time intervals also includes the transference of
properties from intervals to subintervals where subintervals are represented by the rules in

Figure 4.8.

4.3.2 Reasoning about action termination

PAR represents action information needed for carrying out actions, including termination
information. Some reasoning is required, however, to determine all of the necessary action
information. For instance, if an action involving motion includes path endpoint information
(e.g. “Turn the dial to the ON position”), then it has termination information, whereas
a similar action without the endpoint information (e.g. “Turn the dial”) does not. This
reasoning is formalized by the first rule shown in Figure 4.9; it states that for all types

of motion actions involving any object and a path endpoint®, termination information is

"Note that the subinterval is listed first in the starts and finishes relations and the later interval is
listed first in the meets relation.

8pathEnd (E,P) is equivalent to the substructure [path = [end = P]] in the PAR feature structure
for E. (See Appendix C.)

61

1. *E *0 *T *P C(motion(E,0,T), pathEnd(E,P) -> termination(E)).
2. *E *P C(postcondition(E,P) -> termination(E)).

3. *A *P C(purpose(A,generate(P)) -> termination(A)).

Figure 4.9: Rules for reasoning about termination information

available. Other components of action information that provide termination include the
postcondition and the purpose of an action and rules for these are also shown in Figure
4.9. The modal FOL which SPUD uses allows such reasoning to be represented, which
is especially useful when determining what information an agent can be assumed to have

about actions.

4.3.3 Reasoning about concreteness of actions

In this dissertation, I take a concrete action to be one which includes the necessary infor-
mation for performing the intended action. An action instance containing all the necessary
information for its performance can be taken by a Natural Language generator to produce
an effective instruction. If an action instance is not concrete, then its description will not
be effective. For example, if it is intended for an agent to turn something clockwise, then
direction information needs to be included in the action instance. This can be seen as an
extension of reasoning about the termination information provided by an action. Simi-
lar rules to those given in the previous section are used to define what makes an action
concrete. For the example given above, a rule can be stated that an action that involves
motion needs path information in order to be concrete. This, along with other concreteness
rules, are shown in Figure 4.10.°

The first rule in Figure 4.10 states that an action is concrete if it involves motion and
has path information (where path information can be a direction (1a) or an endpoint (1b)).
The second rule states that an action involving force is concrete if it includes information

about its magnitude and direction. The next two rules involve purpose relations between

?SPUD notation: ? means 3, * means V, and , (comma) means A (and).

62

1. *A *0 *T C(motion(A,0,T), path(A) -> concrete(A)).

(a) *A *D C(pathDir(A,D) -> path(A)).
(b) *A *D C(pathEnd(A,D) -> path(A)).

2. xA %0 *W *D C(force(A,0), magnitude(A,W), pathDir(A,D) ->
concrete(A)).

3. *A *0 *T xP C(motion(A,0,T), purpose(A,P) -> concrete(A)).
4. *P C(purpose(P), (7A purpose(A,P)) -> concrete(P)).
5. %A C((?S subactions(A, S), concreteAll(S)) -> concrete(A)).

(a) C concreteAll(nil).

(b) *A C((?N nextAction(A, N), concrete(A), concreteAll(N)) ->
concreteAll1(A)).

Figure 4.10: Rules for concreteness

actions. If a motion action includes information about the purpose for which the action
is done, then the action is considered to be concrete. Likewise, if an action is viewed as a
purpose in general (i.e. purpose(P), explained in Section 5.2.1) and serves as the purpose
for another action, then the action is concrete. Finally, if an action has sub-actions and
they are all concrete, then the action itself is considered concrete. Although these rules

are oversimplifications, they suffice and could be modified as necessary.

4.4 Agent Expertise Information

Agent expertise information includes facts that agents are assumed to know as well as rules
that they are assumed to use to reason generally and specifically about objects, actions,
and behaviors in the domain. By using modal operators to represent different agent types,
agent knowledge reflects levels of experience with the domain. In Section 4.4.1, modal
operators representing three levels of agents for this domain are presented. While most
of the general knowledge about objects and actions (described in the previous sections)

is shared by all agent types, knowledge about specific objects and actions in the domain

63

is assumed to be known by only certain agent types. Section 4.4.4 presents examples of
how general and specific action knowledge, discussed briefly in 4.4.2 and 4.4.3, can be used
to reason how much information about a specific action must be given to an agent of a

particular type in order for that agent to understand how to perform the action.

4.4.1 Agent Types

Agent types are represented by different modal operators. Knowledge predicated with each
modal operator indicates the assumed knowledge of the corresponding agent type. The
modal operators are defined as nesting, i.e. each operator encompasses the knowledge of

the operator below it. The modal operators are as follows:

S represents the system; knowledge predicated with this modal operator (for example,

details of specific actions to be carried out) is private to the system.

U3 represents the advanced agent type; this is the most knowledgeable (non-system) agent

type.

U2 represents the beginner agent type; beginners have limited experience with the domain.

U1 represents the novice agent type; this agent type is assumed to have no real experience

with the specific domain, but may have knowledge gained from similar domains.

C represents common knowledge; this modal operator is used for knowledge assumed to

be known by all possible agents, not just those represented by U1, U2, and U3.

Viewing the modal operators as sets of information, the nested behavior of the operators
could be seen as the following set relationships: S D U3 D U2 D Ul D C. This is shown
graphically in Figure 4.11. For instance, a beginner agent would be assumed to have the
knowledge predicated with U2 as well as the knowledge of novice agents (U1).

Using other modal operators, knowledge that is private to an agent type (i.e. not inher-
ited by the agent types above it) or to a particular agent (determined by prior experience
with the agent or through some other source) can also be represented if necessary. For

general reasoning about actions, the nested operators are sufficient; however, as shown in

64

p
S (system know edge)

(U3 (advanced know edge)
U2 (begi nner know edge)
Ul (novi ce know edge)
((C (common know edge))
2)

\\

Figure 4.11: Nested modal operators for agent types

the next chapter, non-nested operators are used in the generation of instructions for the

different agent types.

4.4.2 General knowledge

General knowledge about the domain encompasses general knowledge about objects, ac-
tions, and behaviors. As shown in Section 4.2, general knowledge about objects includes
rules for reasoning about their types and properties. For example, the rule that states that
a standard screw is a type of screw is included in general knowledge. Rules are also used

for reasoning about properties of objects. The rule
*0 C(property(0, turnable, true) -> property(0, movable, true)).

is an example of reasoning from a specific property (turnable) to a more general one
(movable). Some of these rules could be restricted to certain agent types, but this imple-
mentation does not do so.

General knowledge about actions includes reasoning rules for the general properties of
actions, such as the rules about termination and concreteness given in Sections 4.3.2 and
4.3.3. In addition, other general rules about actions are included; for instance, if an action
has a post-condition involving the state of an object, then the post-condition will hold in

the time interval following the action:'?

The binary configuration notation is used to indicate generic states of objects, not tied to any
particular time interval. The ternary configuration relation, on the other hand, specifies the particular
time interval for which the the predicated state of the object holds.

65

*A *0 *P *R C(postcondition(A,configuration(0,P)), result(A,R) ->

configuration(R,0,P)).

This knowledge is shared by all agents, but general action knowledge could be restricted

to certain agent types, such as in the following rule:

*S *A U2(type(S,screw),
postcondition(A,configuration(S,state(loose))) ->
motion(A,S,rotational),

(?D property(S,loosenDir,D), pathDir(A,D))).

This rule states that if a screw is to be loose as the post-condition of an action, then be-
ginner agents (or higher) would know, just from that information, that the action involves
rotational motion in the loosening direction of the screw.

Another type of knowledge about the domain is that of the interaction of time subin-

tervals and the predicate present over time intervals. In this implementation, the rule
*T *S C(present(T), subinterval(T,S) -> present(S)).

is used along with the rules defining subintervals (see Figure 4.8) to allow the reasoning
that subintervals of the present time interval can also be considered as the present. While
other general knowledge about behaviors in the domain is not used in this implementation,
rules such as those for the inertial behavior (in the frame problem sense) of objects and

their properties could be included and used for reasoning about the domain.

4.4.3 Specific knowledge

Specific knowledge about objects, actions, and behaviors reflects experience with the par-
ticular domain, as opposed to experience with similar domains (reflected in the general
knowledge discussed above). Specific knowledge about objects and behaviors includes the
types and properties of specific objects as well as any quirks that particular objects have
(for example, the lever could be more difficult than usual to lift). In this implementation, I
have assumed that all of the information about the specific objects in the domain is common

knowledge. Such an assumption is not generally well-founded since novice agents cannot

66

*A (postcondition(A, configuration(panell, state(open))) ->
U3 7?S(subactions(A,S), nextAction(S,nil),
postcondition(S, configuration(screwl,location(awayFrom(hole1)))))).

*A (postcondition(A,configuration(screwl,location(awayFrom(holel))))

-> U2 7S7?N (subactions(A,S),
postcondition(S,configuration(screwl,state(loose))),
nextAction(S,N), motion(N,screwl,translational),
pathEnd (N,awayFrom(holel)), nextAction(N,nil))).

*A *0 (type(0,screw), motion(A,0,rotational) ->
Ul instrument(A, screwdriver)).

Figure 4.12: Agent knowledge about opening the panel

be assumed to know the specifics of novel objects. Making certain object information part
of a particular agent type’s knowledge would solve this problem if such a distinction were
useful. As for specific behaviors, none have been needed in this implementation to date,
but rules expressing such behaviors could be easily added.

Specific knowledge about actions includes what actions constitute achieving or doing
other actions in the domain. For instance, advanced agents might know that opening the
panel involves removing the screw. Beginner agents might know what removing the screw
involves but not that removing the screw is a step in opening the panel. Since the modal
operators are nested, the predicated knowledge of the advanced agents (U3) does not need
to include the knowledge of the beginning agents (U2), as shown in the representation of
knowledge about opening the panel given in Figure 4.12.

Rules for other specific actions are expressed similarly and are discussed in more detail
in the next chapter. The following discussion, however, presents a brief example of how
the specific and general knowledge discussed so far is used to reason about an agent’s

knowledge about a specific action when presented with only certain information.

67

4.4.4 Reasoning about agent knowledge

Knowledge that an agent has about the domain, as shown above, reflects the assumed
experience level of the agent. This knowledge can be used in conjunction with rules about
what an agent needs to know in order to perform an action (discussed previously in Sections
4.3.2 and 4.3.3). The aim of encoding this knowledge is to be able to query whether an
agent knows how to perform a particular action as intended given certain information. For

the sake of clarity, I will assume that the following rule:
*A C(concrete(A), termination(A) —> howToDo(A)).

is in the domain knowledge and can be used to reason about whether an agent has enough
information to know how to do an action.!!

Consider the action of opening the control panel. The agent knowledge for this action
is given in Figure 4.12. What information about this action must the system give to an
agent in order for the agent to know how to do the intended action? The private knowledge
that the system has for opening the panel is shown in Figure 4.13. If the agent is advanced

(U3), then the information that the action has the post-condition of the panel being open

is sufficient. That is, in the theorem-prover, the following query
U3 (postcondition(al,configuration(panell,state(open))) -> howToDo(al))

can be proven since the advanced agent’s knowledge (including knowledge inherited from
lower agent types) contains the knowledge that the post-condition information implies
the rest of the information about the action and its sub-actions, i.e. concrete(al) and
termination(al) can be proven.

For beginner agents (U2), the post-condition knowledge alone does not provide enough
information; that is, a query similar to the one above (replacing U3 with U2) could not
be proven. However, providing the information that removing the screw (i.e. taking the
screw out of the hole) is a sub-action of opening the panel allows the beginner agent to

figure out the rest of the action information. The query that succeeds in this case is:

"For reasons explained in the next chapter, this rule is not actually used in the generation process.

68

MmN nnn nn Q N N Munnmwmn Q N1 2]

==

mnmn nm Qwn wn

Action: al

during(al, t_1).

starts(t_1, t).

result(al, t_2).

meets(t_2, t_1).

agent(al, u).

postcondition(al, configuration(panell, state(open))).
subactions(al, oal).

nextAction(al, a2).

parent(al, a).

Action: oal

during(oal, t_1_1).

starts(t_1_1, t_1).

result(oal, t_1_2).

meets(t_1_2, t_1_1).

agent (oal, u).

postcondition(oal, configuration(screwl, location(awayFrom(holel)))).
subactions(oal, ual).

nextAction(oal, oa2).

parent(oal, al).

Action: oa2

during(oa2, t_1_2).

finishes(t_1_2, t_1).

result(oa2, t_2).

agent (oa2, u).

precondition(oa2, oal).

postcondition(oa2, configuration(coverl, location(awayFrom(panell)))).
nextAction(oa2, nil).

prevAction(oa2, oal).

parent (oa2, al).

Figure 4.13: Action information for opening the panel (and its sub-actions)

69

==

mnmomn n nnn Q 0 n

==

mnmnmn nnm Qw0 n

Action: ual

during(ual, t_1_1_1).
starts(t_1_1_1, t_1_1).
result(ual, t_1_1_2).
meets(t_1_1_2, t_1_1_1).

agent (ual, u).

instrument (ual, screwdriver).
motion(ual, screwl, rotatiomnal).
pathDir (ual, ccw).
postcondition(ual, configuration(screwl, state(loose))).
nextAction(ual, ua2).
prevAction(ual,nil).

parent (ual, oal).

Action: ua2

during(ua2, t_1_1_2).
finishes(t_1_1_2, t_1_1).
result(ua2, t_1_2).

agent (ua2, u).

motion(ua2, screwl, translational).
pathEnd (ua2, awayFrom(holel)).
nextAction(ua2, nil).
prevAction(ua2, ual).

parent (ua2, oal).

Figure 4.14: Action information for opening the panel (cont’d)

70

U2 (postcondition(al,configuration(panell,state(open))),
subactions(al,oal),
postcondition(oal,configuration(screwl,location(awayFrom(holel))))

-> howToDo(al)).

indicating the information the beginner agents need in order to perform the intended action.
Finally, for novice agents (U1), all of the action information (except its instrument) must
be provided in order for the agent to perform the action.

Thus, varying amounts of action information is needed by the different agent types in
order to carry out actions as intended. By using modal operators when predicating agent
knowledge, different levels of experience with domain can be represented and reasoned

about in order provide the appropriate action information to the agents.

4.5 Conclusion

Knowledge needed to reason about the domain falls into one of the types discussed above
(object, action, and agent). With the mFOL representation that SPUD uses, any other
knowledge needed to model other aspects of the domain, or completely different domains,
could be added straightforwardly. Each of these types of information has been studied
previously for various reasoning tasks and the mFOL representation can be used for the
same reasoning tasks. However, these sources of information allow SPUD to reason about
Natural Language Generation tasks as well.

The ability to represent which pieces of action information contribute to the concrete-
ness and the termination information of an action anchors the representation of this do-
main. Without the ability to represent and reason about such information, it could not be
determined whether actions were sufficiently defined to be carried out. Such an inability
affects many reasoning tasks, such as planning. However, beyond the general usefulness of
representing such information, the same representation supports reasoning about actions
for Natural Language Generation purposes.

SPUD reasons about what the agent knows and then generates sentences to describe

actions (and whatever else needs to be described). The resulting text relies on the agent’s

71

knowledge and therefore it is tailored to the agent’s experience with the domain. Based on
the general and specific knowledge assigned to each agent expertise level, less experienced
agents will receive more detailed instructions than those with more experience, who know
how to do more in the domain. Without the ability to represent different agent expertise
levels, such tailoring of generated text would not be possible. The power of SPUD lies
in its use of the independently-motivated and powerful mFOL representation to generate

such tailored Natural Language instructions efficiently.

72

Chapter 5

Generating Instructions

using SPUD

Along with the domain knowledge described in the previous chapter, SPUD needs lexical
information in order to generate instructions for actions in the domain. Lexical informa-
tion includes syntax, semantics, and pragmatics for individual lexical items (i.e. words
and phrases). Syntactic information is represented by a Feature-Based Lexicalized Tree-
Adjoining Grammar (FB-LTAG), which is a powerful general-purpose lexical representa-
tion (see Section 2.6). In SPUD, however, semantics and pragmatics are also associated
with lexical items, unlike in standard FB-LTAG. In addition, pragmatic information is
associated with individual trees, each of which can represent the syntax of many different
entries, thus specifying when it is appropriate to use a particular syntactic construction
(tree). The first two sections of this chapter present the language model (i.e. the lexical
items with their associated trees) used in the generation of instructions for the domain
actions mentioned in Section 4.1.

SPUD employs a greedy algorithm to choose which lexical items to use in a description
of an entity (object, event, or action) which must satisfy given communicative goals. SPUD
uses a modal first-order logic theorem-prover [Stone, 1998] (see Section 2.3) to reason
about the effect of including certain lexical items in the description, such as what the

hearer infers about the entity given the description and previous knowledge. In this way,

73

SPUD generates tailored, effective instructions based on the language model and a model
of the hearer. SPUD’s algorithm is described in Section 5.3 and illustrated through the
generation of example instructions in Section 5.4. Section 5.5 discusses the benefits and

costs of using SPUD for generating effective instructions.

5.1 Basic Lexical Information

As described in Section 2.6, FB-LTAG provides a formal, linguistically-sound way of spec-
ifying lexical items and their syntactic constructions and how they combine together to
form larger constructions. However, in order to generate text using FB-LTAG, semantic
and pragmatic information must be associated with entries in the grammar. In SPUD,
semantic information appears with individual lexical items and pragmatic information can
appear with lexical items and/or their associated syntactic constructions.

This work does not rely heavily on the syntactic details of TAG. The most important
point is how the semantics is built along with the syntactic tree. As described in [Stone
and Doran, 1997, when a substitution or adjunction operation is applied to a tree, the
semantics of the substituted or adjoined tree is simply conjoined to the semantics of the
original tree. Therefore, the semantics of a complicated syntactic construction is easy to
compute. The operation of SPUD relies on this ease of computation, as is shown in Section
5.3.

The next two sub-sections describe how lexical items and trees are specified in SPUD.
The remaining sub-sections briefly describes the basic lexical items of the implemented

language model.

5.1.1 Specifying lexical items

Each lexical item in the grammar includes the word(s) which serve as anchors for the TAG
trees, the type of node that it represents, features to match when considering using it at
a certain node in a partial tree, a list specifying the trees that it anchors, its complete
semantics (separated into what is asserted and what is presupposed by the lexical item),

and its pragmatics. An example lexical item, giving information for the transitive verb

74

word = { name = { turn }

basic = { true }

decl = { alpha(S,R,E,0) }

site = { vp(S,R,E) }

match = { OO }

semantics = { during(E, R), motion(E, 0, rotational) }
presupposition = { true }

pragmatics = { property(0, turnable, true) }

trees = { transitiveVP(S,R,E,0) } }.

turn,

Figure 5.1: Lexical item entry for the verb turn

is shown in Figure 5.1. The fields in a lexical item entry are as follows:
name gives the lexical item.

basic indicates whether the lexical item is considered a basic word, in the sense of

[Rosch, 1978].

decl indicates the type of trees! that the lexical item anchors and a list of semantic

indices (i.e. arguments) used in the trees.

site indicates the type of node which the lexical item can expand, needed for deter-
mining which lexical items are applicable to a given partial tree. This field indicates
the top node of the trees associated with the lexical item (see below). While this
could be automatically extracted from the associated trees, listing it explicitly with
the lexical item is more efficient, similar to declaring a function’s prototype in a

computer program.

match gives syntactic features on the site node which must be matched in order to

use the lexical item at that site.

semantics contains the meaning asserted by the lexical item, using the same predi-

cates as in the domain and action knowledge representation. Existential quantifiers

'alpha indicates initial trees and beta auxiliary trees; see Section 2.6.

75

(e.g., 7Q for 3Q) can be used to predicate the existence of some entity which does
not appear as a semantic argument in the trees of the lexical item (see the lexical

item remove in Figure 5.7).

e presupposition indicates what must be shared knowledge in order for the lexical
item to be selected. See the lexical item open in Figure 5.7 for an example. This is a
useful feature for producing efficient texts [Stone and Webber, 1998], but is not used

to its full advantage in this implementation.

e pragmatics provides constraints on the situations in which the lexical item can
used. For instance, turn can only be used when its object has the property of being
turnable.? In Figure 5.9, the pragmatics command for the empty subject lexical
item indicate that the subject can only be omitted if commands (i.e. imperative
sentences) are being generated. If the pragmatics for a lexical item does not hold,

the lexical item will not be considered for addition to a partial tree.

e trees gives the names of those trees which the lexical item can anchor. The full
structure of these trees is provided separately (see the next section), as many lexical

items can anchor the same tree.

In the presentation of particular lexical items, only those fields with relevant informa-

tion are given; the decl field and fields which are empty or only contain true are omitted.

5.1.2 Specifying syntax

Each elementary tree used in SPUD has associated with it a complex name which includes
its arguments, relevant pragmatic information, and a tree structure. A lexical item can
participate in many syntactic constructions, some of which may be inappropriate in a
particular situation. Thus, pragmatic information indicates when it is appropriate to use
the syntactic structure.

Tree structures specify information for each node in the tree, including their type, their

features (top and bottom), whether they are substitution sites (subst) or adjunction sites

*While the argument can be made that this is a semantic constraint that would be better placed in the
presupposition of lexical items (see [Stone and Doran, 1997]), I have consistently included such constraints
in the pragmatics of lexical items of the implemented language model.

76

entry = {
name = { simpleS(S,R,E,A) }
pragmatics = { present(R) }
tree = {
node = {
type = { s(S,R,E,A) }
top = { (cat s) }
bottom = { (cat s) }
kids {
subst = {
type = { u:np(d) }
top = { (cat np; number X; person Y; case nom) }
}
node = {
type = { ip(S,R,E) }
top = { (cat ip; form main; number X; person Y) }

[

bottom = { (cat ip; form main; number X; person Y) }
kids = {
node = {
type = { u:infl(S,R,E) }

top = { (tense present; form main; number X; person Y) }
bottom = { (tense present; form main; number X; person Y) }
kids = { anchor = { index = {1} } }

}
subst = {

type = { vp(S,R,E) }

top = { (cat vp; tense present; form main; number X; person Y) }
}

Figure 5.2: Full SPUD specification of the simpleS tree

7

S(S7R‘7E’A‘)

ump(A)] ip(S,R.E)

winfl(S,R,E,A) vp(S,R,E)|
|

<

Figure 5.3: Graphical specification of the simpleS tree

(foot), and the nodes which are their children (kids). Figure 5.2 shows the full tree entry
for the basic sentence structure used in this implementation. Features associated with
nodes pass information between nodes, such as tense and agreement information. Since
features are not vital to this dissertation,®, trees are shown graphically (as in Figure 5.3)
throughout the rest of this chapter.* (Appendix A.2 contains the full specification of all
of the tree entries.)

One final note about the tree specification. The u: appended to a node name indicates
that the information provided by that node need not be new to the hearer. By specifying
that a node need not contain new information, SPUD can choose to add lexical items which
would otherwise not meet its criteria. Although this implementation has trees which use
u: for some nodes, this is not a vital aspect of the implementation and is more for further

work which might involve anaphors (e.g. pronouns).

5.1.3 Discourse and sentence structure

The top-level “lexical items” are those which represent sentence boundaries in a discourse
segment (i.e. instruction step). The anchors for these trees include punctuation, specifically

the period. The basic discourse segment consists of a single sentence followed by a period,

3The only two features used in this implementation which affect the final output are the tense and form
features. Tense is needed by the morphological processing to inflect the verb correctly. Form is needed by
the “means clause” entry (see Section 5.2.2) where the subordinate verb phrase must be in gerund form.

4 As note earlier, o indicates the anchor, | denotes a substitution site, and * specifies an adjunction site.

78

{3

{ ds(S,R,E) }

word = { name

site

Legical item: semantics = { step(E), during(E,R) }

é;ées = { ds1(S,R,E) }

ds(S,R,E)
Tree entry:

/\
SSREL

Figure 5.4: Basic discourse segment entry

as shown in Figure 5.4. Other discourse segment entries are discussed in Section 5.2.

The next level consists of sentence trees which are anchored by inflection (generally
tense) which affects the form of the verb (i.e. remove vs removes vs removed). 1 have used
only two types of sentences anchored by the inflection present tense since only imperative
instructions are to be generated in this implementation. The first type of sentence cor-
responds to the standard rule 8 — NP VP (Figure 5.5) and is used for actions or events.
The second is a predicative sentence, S — NP be Pred (Figure 5.6), used for describing

states, e.g. “the screw is loose”.

5.1.4 Verb phrases

Only one type of verb phrase, namely transitive, is involved in the example instructions
(besides the predicative “be” verb phrases). Transitive verb phrases consist of the verb
and its direct object (see Figure 5.7). One reason for not addressing other types of verb
phrases, such as intransitive or ditransitive, is the nature of maintenance instructions.
They involve the manipulation of objects, thus intransitive verb phrases (i.e. verb phrases
without direct objects) are not found. The explicit manipulation of more than one object
at a time or the involvement of another agent is rare in these instructions, so ditransitive

verb phrases (i.e. verb phrases with a direct object and a required indirect object) are

79

word = { name = { present }
site = { s(S,R,E,A) }
Lexical item: semantics = { during(E,R), agent(E,A) }

pragmatics = { present(R) }
trees = { simpleS(S,R,E,A) }

S(S’R"E’A‘)

unp(A)} ip(S.R.E)

Tree entry:

winfl(S,R,E) vp(S,R,E)|
|

o

Figure 5.5: Simple sentence entry

word = { name = { present }
site = { s(S,R,configuration(0,P)) }
Lexical item:

semantics = { configuration(R,0,P) }

trees = { predS(S,R,configuration(0,P)) }

s(S,R,configuration(O,P))

unp(O p(S,R,E)
Tree entry: /\

w:infl(S p(S,R,P)
|
| /\
v(be) pred(R,0,P))

|
be

Figure 5.6: Predicative sentence entry

80

also rare. However, maintenance instructions frequently involve the motion of objects
and therefore prepositional phrases are needed to specify path information for the actions
involving motion. Such path information is optional and therefore not considered part of
the verb’s argument structure. To give SPUD the option to include path information in an
action description, prepositional phrases are encoded as auxiliary trees which adjoin onto
verb phrases. The lexical item to introducing a prepositional phrase is used to indicate
the end of a path (see Figure 5.8).5 (For a discussion of encoding motion verbs and their

properties using a TAG formalism, see [Palmer et al., 1999].)

5.1.5 Noun phrases

Two types of regular noun phrases are encoded in the current implementation, an indefinite
noun phrase with the determiner a and a definite noun phrase without a determiner (since
it is typically omitted in maintenance instructions).® Pragmatics, in this case, whether the
object is uniquely identifiable or not, determines which NP tree is used.” The semantics
for nouns consists of its type, e.g. type(0,panel). Any additional information about an
object, such as a label, can be adjoined into a noun phrase with an adjective auxiliary tree.
For the definition of these lexical items and trees, see Appendix A.

In addition to these regular noun phrases, a noun phrase for an empty subject is
specified so that proper subject-less (i.e. imperative) instructions can be generated. The
lexical item for the empty subject (indicated by the specification for nominative case in the
match field) has the semantics that the subject is the hearer and pragmatic information
which indicates that it is only appropriate when the predicate command holds, indicating

8 A similar tree structure (with different

the generation of instructions (see Figure 5.9).
syntactic features) could be used to generate instructions which elide the object which is

in focus, a common occurrence in naturally-occurring instructions (e.g. Slide valve aft and

®The predicate locObj is used to take the object out of a location relation; for example,
locObj(at(panell) ,panell)
holds and can be used to bind a variable (such as 0) to the object identifier (panell).

SWhile plural noun phrases appear frequently in maintenance instructions, they are not addressed in
this dissertation. While the number of the noun phrase (i.e. singular vs. plural) which serves as a verb’s
argument does affect the termination information and other performance information of the action, it is
not one of the sources of termination information that I chose to address.

"As implemented, all objects in the domain are uniquely identifiable.

#The e which serves as the anchor for the tree is removed by morphological processing.

81

Lezical entries:

word = {

name = { open }

site = { vp(S,R,E) }

semantics = { during(E,R),
postcondition(E,configuration(0,state(open))) }

presupposition = { configuration(R,0,state(closed)) }

trees = { transitiveVP(S,R,E,0) }

1.

word = {

name = { move }

site = { vp(S,R,E) }

semantics = { during(E,R), motion(E, 0, translational) }

pragmatics = { property(0, movable, true) }

trees = { transitiveVP(S,R,E,0) }

1.

word = {

name = { remove }

site = { vp(S,R,E) }

semantics = { during(E,R),
(?L?X configuration(R,0,location(L)), locObj(L,X),
postcondition(E,configuration(0,location(awayFrom(X))))) }

pragmatics = { property(0, movable, true) }

trees = { transitiveVP(S,R,E,D) }

}.

VP(S7R‘7E)
N

Tree entry: v(E) wnp(O)
|

<

Figure 5.7: Transitive verb entries for open, remove, and turn

82

Lexical item:

Tree entry:

word = { name = { to }

ééél = { beta(S,R,E,P,0) }
site = { vp(S,R,E) }

semantics = { pathEnd(E,P), locObj(P,0) }

trees = { bVPpp(S,R,E,P,0) }

vp(S,R,E)

vp(S,R,E), pp(P)

/\
1|3 umnp(0)}
o

Figure 5.8: to lexical item (prepositional phrase)

Lexical item:

Tree entry:

word = { name = { e }

éiée = { np(a) }
match = { (case nom) }
semantics = { hearer(d) }

pragmatics = { command }
trees = { epsilonNP(A) }

np?A)

<

Figure 5.9: Lexical entry for an empty subject

83

remove). This implementation does not address such eliding of objects in instructions, but

SPUD is capable of handling such a construction.

5.2 Multi-clausal lexical items

In order to express necessary action information such as sub-actions, some instructions
require multi-clausal sentences or even multiple sentences. The multi-clausal lexical items
which make these instructions possible are described in this section. In order to choose
between a single clause and multiple clauses, however, SPUD must be given preferences
to guide the choice of the appropriate lexical items. Since SPUD uses a greedy algorithm
without backtracking (see Section 5.3), such guidance is crucial. If SPUD chooses a lexical
item which precludes improvements later in the generation process, SPUD has no way to
undo the choice. As currently implemented, SPUD must make the right choice first. Thus,
the issue of stylistic preferences, i.e. guiding SPUD to make the right choice, is presented

before the presentation of the multi-clausal lexical items.

5.2.1 Stylistic preferences

Many researchers have addressed the issue of generating tailored text to reflect stylistic
preferences when addressing different types of hearers. (See the discussions of [Paris, 1988;
Bateman and Paris, 1989; McKeown et al., 1993; Nicolov et al., 1996] in the next chapter.)
[Bateman and Paris, 1989], in particular, recognize that hearers with different levels of
experience with the domain require different phrasing of information. When implementing
lexical constructions for this dissertation, I found that in order to get appropriate phrasings
and levels of detail based on the agent type, SPUD needs either information about agents
in addition to the agent knowledge discussed in Chapter 4. Therefore, as part of agent
knowledge, I include how agents view certain kinds of actions, which affects how SPUD
describes them to different agents.

Since an agent’s view of actions is private to the agent and should not be treated as
inheritable or shared by agents at other levels, the nested modal operators described in

the previous chapter will not work. Additional modal operators are needed to predicate

84

knowledge of the agent types’ views of actions. They are defined as follows:

P1 encompasses the novice agent type’s views of actions and knowledge of the domain.
In terms of the other modal operators, it inherits all the knowledge predicated with

and inherited by U1, i.e. P1DUL.

P2 represents the beginner agent type’s views and knowledge, such that P2D>U2. Notice
that knowledge predicated with P1 is not included in the knowledge of the beginner

agents (unlike knowledge predicated with U1).
P3 represents the advanced agent type’s views and knowledge, such that P3>U3.

For the system to use knowledge of agent type in generating instructions, its knowledge
must encompass all of the assumed knowledge of the agents, including agents’ views of
actions. That is, S D (P1 U P2 U P3) where S is the system’s modal operator. With this

modal machinery in place, preferences (i.e. views) for each agent type can be defined.
For novice agents, non-basic (i.e. higher-level) actions in the domain seem compli-

cated since they involve sub-actions. This view is encoded in a predicate called complex.

For instance, the fact that a novice agent views opening any object in the domain as a

complicated action is represented by the following rule:”

*A *0 (postcondition(A,configuration(0,state(open))) -> P1 complex(A)).

Some particularly complicated higher-level actions, which involve complex sub-actions,
require a separate predicate called elaborate to indicate how novice agents view such
actions. For beginner agents, certain actions are viewed as purposes for other actions,
indicating beginner agents’ increased understanding of the domain. A purpose predicate
is used to indicate those actions which are viewed as purpose actions.

In the following presentation of multi-clausal lexical items, these predicates appear in
the pragmatics for some of the lexical item entries, indicating when particular constructions

should be used because of the agents’ view of an action.

9 Alternatively, rules which reason about the hierarchical level of the action could be used instead of
relying on semantic features of the action.

85

word = { name = { by }
decl = { beta(S,R,P,E,T) }
site = { vp(S,R,P) }

Legical item: semantics = { subactions(P, E),
during(E, T), starts(T, R) }

trees = { VPcomp(S,R,P,E,T) }

1.

Vp(S7R‘7P)

Vp(S7R‘7P)* CVp(S,T,E)
Tree entry:
comp vp(S,T.E)|
|

<

Figure 5.10: Means clause entry

5.2.2 Purpose and means clauses

One way of expressing how to do an action is to describe the means by which it can be
accomplished. This can be done by adjoining to the main clause a subordinate means
clause introduced by the lexical item by. The means clause lexical item and tree is shown
in Figure 5.10.1° This is the simplest way to express an action’s sub-actions.

Sometimes, however, it may be appropriate to emphasize a sub-action by putting it in
the main clause. Sentences with purpose clauses achieve this since the subordinate action is
described in the main clause and the purpose is described in a subordinate clause anchored
by to. The two types of purpose clauses, discussed in Section 3.3.3, differ in whether the
purpose clause expressing the higher-level action is before or after the main clause. The
case where the purpose clause is adjoined to the end of the main clause is shown in Figure

5.12. Due to the hierarchical nature of actions in maintenance tasks and the fact that the

"peta in the decl field indicates that the lexical item is associated with auxiliary trees which are added
to other trees using adjunction.

86

{3

word = { name

site = { ds(S,R,E) }
semantics = { step(E), during(E,R),
Lexical item: substep(P,E), during(P,T) }

pragmatics = { purpose(E) }

trees = { ds3(S,T,P,R,E) }

ds(S,R,E)
Tree entry:

/\
s(S,T,P,A)l o

Figure 5.11: Discourse segment entry for emphasizing actions done for a purpose

higher action is typically the one being described, a discourse segment tree encodes the
emphasis on the sub-action (i.e. its expression in the main clause). In the normal discourse
segment entry (see Figure 5.4), the sentence node is given as s(S,R,E,A), where E is the
higher action. However, in the discourse segment for cases in which the sub-action is done
for the purpose of the higher-level action, the sentence node is s(S,T,P,A) where P is the
subordinate action and T is the time interval in which it occurs (see Figure 5.11). The
pragmatics of this discourse segment tree indicates that if the agent views the main action
as a purpose action, then the discourse segment entry shown in Figure 5.11 will be used.

Once this discourse segment entry is chosen based on its pragmatics, the lexical item to
can adjoin a purpose clause to express the high-level action.

When an action is viewed as complex by the hearer, I want to be able to express the
main action in a fronted purpose clause (see Figure 5.13) in order to provide a framework
for interpreting the subordinate action described in the main clause (see Section 3.3.3).
Unlike the non-fronted purpose clause which adjoins to a verb phrase, this one must adjoin
onto a sentence node. This allows complicated descriptions of the sub-action(s) to be in
multiple clauses in the sentence without creating a convoluted sentence. The pragmatics

of this construction specifies that in order for this fronted purpose clause to be applicable,

87

word = { name = { to }
site = { vp(S,R,E) }

Lexical item: . .
semantics = { purpose(E,generate(P)), during(P,T) }
pragmatics = { purpose(E) }
trees = { compVP(S,R,E,P,T) }

1.
vp(S,R,E)

vp(S,R,E), cvp(S,T,P)
Tree entry:
comp vp(S,T,P)|
|

<

Figure 5.12: Purpose clause entry

SPUD must be generating instructions (i.e. command holds'!) in addition to the main

action being viewed as complex by the agent.

5.2.3 Until clauses

Some maintenance instructions use until clauses to convey an action’s post-condition. In
SPUD, these adjoin onto verb phrases, providing a substitution site for a sentence describ-
ing the post-condition of the action (see Figure 5.14).'2 (A similar tree would be used by
other lexical items, such as while, which involve the adjunction of a sentence to a verb
phrase, but different features would need to be associated with the adjoined sentence to
reflect the different syntactic requirements of the lexical item.) Since an action’s result
time interval is common knowledge, this knowledge can be presupposed semantics of the

lexical item.

' Alternatively, if sentence type were included in the features of the trees, the match field in the lexical
item could be used to enforce the need for an imperative sentence.

12«Fronted” until clauses, such as in “Until the light turns green, hold the lever at the RESET position”,
are not found in the corpus of maintenance instructions described in Chapter 3.

88

word = { name = { to }
site = { s(S,R,P,p) }
Lexical item: semantics = { subactions(P, E), agent(E,A),
T e during(E, T), starts(T,R) }
pragmatics = { command, complex(P) }
trees = { compSfronted(S,R,P,E,T,A) }
1.
S(S’R”P’A’)
Tree entry: cs(S,R,P,A) , s(S,T,E,A)]

comp ws(S,R,PA).
|

<

Figure 5.13: Fronted purpose clause entry

word = { name = { until }
site = { vp(S,R,E) }
Lexical item: semantics = { postcondition(E, P) }
presupposition = { result(E, T) }
trees = { VPcompS(S,R,E,P,T) }
1.
vp(S.R.E)

TN

- . vp(S,R,E), cs(S,T,P)
ree entry: P
comp s(S,T,P)|
|

<

Figure 5.14: Until clause entry

89

word = { name = { and then }
site = { vp(S,R,E) }

Lexical item: .) .
semantics = { nextAction(E,N), during(N,T) }
trees = { bVPconjoin(S,R,E,N,T) }

1.
vp(S,R,E)

Tree entry:

VP(S,R,E)* o © Vp(SuTaN)wL

Figure 5.15: Entry for conjoining verb phrases (“and then”)

5.2.4 Conjoining clauses

For instructions that need to describe two consecutive actions in the same sentence, the
tree anchored by “and then” in Figure 5.15 is used to adjoin another verb phrase to an
existing verb phrase. Although there can be problems with conjunction due to infinite

recursion, this entry has been used without difficulty for the example instructions.

5.2.5 Multi-sentence instruction steps

Complicated actions with multiple sub-actions require multiple sentences to describe. A
treatment similar to that of adjoining verb phrases as in Figure 5.15 would be preferable for
issues of uniformity and discourse structure. However, in the interest of efficiency for this
implementation, the entry for a multi-sentence discourse segment shown in Figure 5.16 is
used. It is anchored by periods and the word then (to indicate the sequential nature of the
sub-actions), with the pragmatics of elaborate(A), indicating that this discourse segment
structure should be used when the agent can be assumed to view the high-level action as
very complicated. Without the statement of its pragmatics and the accompanying agent
knowledge bearing out the appropriateness of this tree, the use of this tree would not be

given a high enough ranking to be chosen as the discourse segment structure since it has

90

word = { name = { . Then }
site = { ds(S,R,E) }
semantics = { step(E), during(E,R),
Lexical item: substep(E1,E), during(E1,R1),
nextAction(E1,E2), during(E2,R2) }
pragmatics = { elaborate(E) }
trees = { ds2(S,R,E,R1,E1,R2,E2) }
1.
ds(S,R,E)
Tree entry:
s(S,R1,E1,A)| .o Then, s(S,R2,E2,A)] .o

Figure 5.16: Multi-sentence discourse segment entry

more unfilled substitution sites than other choices. The next section discusses SPUD’s

algorithm for generating text, which should clarify the need for such stylistic preferences.

5.3 The SPUD Algorithm

When told to describe a particular action instance, SPUD uses the information about the
action, the agent, the domain, and the lexical items to choose a lexical item which best
furthers the description of the action and the satisfaction of other communicative goals. It
employs a simple greedy algorithm, briefly described in Figure 5.17.13 (See [Stone, 1998]
for a full description.)

One communicative goal that SPUD always has is to identify all entities in the descrip-
tion uniquely. SPUD calculates the distractors for an entity given the information in its
description so far in order to figure out whether the entity is uniquely identifiable from

the description. Distractors are those entities in the domain of the entity that can have

13 A possible variant of this algorithm is one which relaxes the restriction of requiring additions to provide
immediate improvement. Additions which do not improve the tree immediately can pave the way for future
additions which will satisfy goals.

91

e Start with a tree with one node, which is a substitution site for a given type (e.g.
DS or NP), to describe a given entity (e.g. action or object).

e While the current tree contains unfilled substitution sites or there are unsatisfied

goals:

— Consider all trees resulting from a single addition (i.e., a substitution or adjunc-
tion) to the current tree.

— Compute the rank of the resulting trees based on

*

*

*

*

*

the number of goals satisfied,
the number of distractors for the unsatisfied goals,
the number of flaws (e.g., unfilled substitution sites),

the specificity of licensing (semantic) information (i.e., SPUD gives a lower
rank to trees which provide a subset of the semantic information provided
by another tree), and

whether the added lexical item is basic or not.

— If there are no lexical items which can be added to the tree or there is no

improvement in satisfying goals, leave the loop.

— Otherwise, make the highest ranking tree the current tree and go to the begin-
ning of the loop.

e Return the current tree (after morphological processing) and its derivation status:

— If it satisfies all goals, then SPUD reports derivation completed successfully.

— If it satisfies some goals but none of the possible additions could satisfy unsat-

isfied goals, then SPUD reports no more improvement.

— If there are unsatisfied goals and unfilled substitution sites, but no lexical items
which could be added at all, then SPUD reports no actions possible.

Figure 5.17: SPUD’s algorithm

92

the same description. In order to allow SPUD to reason whether an entity is uniquely de-
scribed, the knowledge provided to SPUD must include domain statements for all entities
that need to be described. The following rules suffice for providing these statements for
objects and locations, indicating that any object could be confused with any other object

and similarly for locations:

x01 *02 (object(01), object(02) -> C domain(01,02)).

*P *Q (location(P), location(Q) -> C domain(P, Q)).

In addition, each action instance needs to have domain statements as well; however, in this
implementation, action entities (i.e. instances) have only one domain statement, namely
that it is the only entity its domain (e.g. C domain(al,al)). If the calculated distractor
list for an entity is not empty, then further information must be included in its description
to identify it uniquely.

Other types of communicative goals, such as making sure an action’s description is
concrete and includes termination information, are also consulted when deciding which
lexical item to add to a tree. SPUD considers all of the information provided by the tree
that it has built so far. If a communicative goal has not been satisfied, then a lexical item
which provides information which will satisfy the communicative goal will be highly ranked
for inclusion in the description. Of value to the current work is that SPUD’s algorithm
accounts for the fact that termination information can be provided by many different
parts of a sentence. If SPUD is given the communicative goal of conveying termination
information and the current tree does not yet provide it, SPUD will try to add a lexical
item (possibly introducing another clause) which gives termination information. In the
next section, the generation of example instructions is described in detail, illustrating how

SPUD’s algorithm works.

5.4 Generating Example Instructions

A set of three higher-level actions makes up the actions considered for this dissertation.
These are sub-steps of one major action in the domain, that of restarting the pump once it

has halted because of high pressure. (See Section 4.1 for the description of the domain and

93

Re-start the pump (a)

Open the panel (a1) Normalize the pressure (a2) Start the pump (a3)

| /\
nal

Remove the screw (oal) oa2 Reset the pump (sal) sa2
N N
ual wua2 ral ra2

Leaf English gloss of action information

ual Turn the screw counterclockwise until it is loose

ua2 Take the screw out of the hole

oa2 Remove the cover

nal Turn the dial clockwise until the gauge is in the normal range
ral Raise the lever to the RESET position

ra2 Hold the lever until the light turns green

sa2 Press the ON button

Figure 5.18: Actions for example instructions

Section 4.3.1 for the action representation.) Each of the three actions have sub-actions of
its own, as shown in Figure 5.18. The leaves of this action/sub-action tree represent those
actions considered basic, i.e. those with no further breakdown into sub-actions.

In Section 5.4.2, I describe in detail how the instructions for the first action are gener-
ated for each of the agent types. The description pulls together how all of the information
discussed in this chapter and the previous one are used by SPUD to generate effective
instructions. In Sections 5.4.3 and 5.4.4, I point out interesting features of the generation
of the instructions for the other two actions. First, however, SPUD needs one more piece

of information in order to generate the instructions.

94

gen = {
name = { Step 1 for Advanced }
private = { S $ }
shared = { P3 (P3 present(t_1) -> §) }
describe = { ds(s,t_1,al) }
pattern = { ds(S,R,E) }
features = { OO }
communicate = { concrete(al) termination(al) }

Figure 5.19: An example generation instance (Step 1 for Advanced)

5.4.1 Generation instances

As can be surmised from the discussion of SPUD’s algorithm, SPUD needs to know the
entity to be described, the type of syntactic category (i.e. DS, S, etc.) to describe the entity,
communicative goals to be achieved by the description of the entity, and the specification
of the modal operators for the system’s knowledge and the agent’s knowledge. These pieces
of information are provided to SPUD in a generation instance which is used to start the
generation process. Figure 5.19 shows an example generation instance. The fields that

make up a generation instance are as follows:
name states the name to be displayed in the list of defined generation instances.

private gives the modal operator, e.g. S, designated for the system’s private knowledge;
$ stands for an arbitrary statement, indicating that any statement predicated with

or inherited by the designated modal operator is system knowledge.

shared gives the modal operator, P3, designated for the hearer’s assumed knowledge. An
additional piece of information, namely P3 present(t_1), is added to the assumed
knowledge using the form shown in the example. This indicates that during the gen-
eration process, present (t_1) should be considered shared knowledge thus licensing

the use of present tense lexical items.!

1 Another way to accomplish this would be to use features field.

95

describe indicates the type of syntactic construction to be generated; this includes the
specification of the entity (and related entities), in the form of the arguments of the
syntactic construction, to be described; in this case, a discourse segment is spec-
ified with the arguments: s (the speech time), t_1 (the event time), and a1l (the

event /action).

pattern indicates the argument structure of the syntactic construction indicated in the

describe field; it is used to match against the site field in lexical items.

features lists any features required of the syntactic construction; this field has not been

used in any of the generation instances in this dissertation.'?

communicate lists communicative goals (in addition to that of describing the entity
uniquely) to be achieved by the generated text; e.g. the statements concrete(al)
and termination(al) serve as communicative goals that must be satisfied, i.e. the
generated text must supply information to make these statements provable using the

shared modal operator.

5.4.2 Opening the panel

Opening the panel is the first step in the sequence of actions for re-starting the pump (see
Figure 4.2). The action information for this top-level action, called a1, is shown in Figure
5.20. The step predicate is used to indicate the action’s standing in the action/sub-action
tree; in this case, it is a main instruction step and therefore is suitable to be described using
a discourse segment (see Section 5.1.3).'® The rest of the action information conforms to
the action representation presented in Section 4.3.1. The action occurs during the time
interval t_1, which starts the time interval t, and results in the time interval t_2. The
agent of the action is the hearer, represented by u as indicated by the following statements

included in the domain knowledge:

'5The features field could be used to require the generated text to be in present tense, instead of using
the additional piece of knowledge in the shared field. If it were to be used in this way, the features field
for the example would be (tense present).

6 A rule could be used to specify this information automatically by checking the distance from the action
to a leaf below it or to the top-most action.

96

step(al).

during(al, t_1).

starts(t_1, t).

result(al, t_2).

agent(al, u).

postcondition(al, configuration(panell, state(open))).
subactions(al, oal).

nextAction(al, a2).

parent(al, a).

M nmnmnmnn Qwnn n n

Figure 5.20: Action information for opening the panel

C hearer(u).

C domain(u,u).

The action’s post-condition states that the panel is in the state open and the action has
oal as its first sub-action.!” Finally, the action that follows al is a2 and its parent is the
action named a.'®

The action information for al’s two sub-actions, called oal and oa2, is shown in Figure
5.21. The first sub-action, oal, has the additional property of being a , which is used in the
semantics of the lexical items for discourse segments. Otherwise, the action information
is self-explanatory. The first sub-action has sub-actions of its own, shown in Figure 5.22.
These detail the steps involved in removing the screw: loosening the screw and taking it
out of the hole. Given these three levels of action detail, the action description for al can
have many forms depending on the agent’s expertise and the communicative goals to be
satisfied.

The lexical items that could be needed for this action description include: verbs for
opening, remowving, and turning; nouns for panel, cover, and screw; an adverb for counter-
clockwise; until; purpose and means clauses (to and by); the empty subject noun phrase
for imperative; sentence and discourse segment entries. Specification of these lexical items

can be found in previous sections or Appendix A.

7Ounly the first sub-action is listed since nextAction statements are used to find the next sub-action.
'8 An additional statement about the action is the domain statement, i.e. C domain(al,al), discussed
previously.

97

=

MM NN nwnw nunu 2 L2 L2 LY

=

MM NN n nn n Q nn nn n

Action: oal
substep(oal, al).
during(oal, t_1_1).
starts(t_1_1, t_1).
result(oal, t_1_2).
agent (oal, u).
postcondition(oal, configuration(screwl, location(awayFrom(holel)))).
subactions(oal, ual).
nextAction(oal, oa2).
prevAction(oal, nil).
parent (oal, al).

Action: oa2

during(oa2, t_1_2).

meets(t_1_2, t_1_1).

finishes(t_1_2, t_1).

result(oa2, t_2).

agent (0a2, u).

precondition(oa2, configuration(screwl, location(awayFrom(holel)))).
postcondition(oa2, configuration(coverl, location(awayFrom(panell)))).
nextAction(oa2, nil).

prevAction(oa2, oal).

parent (0a2, al).

Figure 5.21: Action information for removing the screw and the panel

98

=

MM NN n nnwn N n 2 nn

=

MM NN nw n n n Q un nn

Action: ual
during(ual, t_1_1_1).

starts(t_1_1_1, t_1_1).
result(ual, t_1_1_2).

agent (ual, u).

instrument (ual, screwdriver).

motion(ual, screwl, rotational).

pathDir(ual, ccw).

postcondition(ual, configuration(screwl, state(loose))).
nextAction(ual, ua2).

prevAction(ual,nil).

parent (ual, oal).

Action: ua2
during(ua2, t_1_1_2).
meets(t_1_1_2, t_1_1_1).
finishes(t_1_1_2, t_1_1).
result(ua2, t_1_2).

agent (ua2, u).

motion(ua2, screwl, translational).
pathEnd(ua2, awayFrom(holel)).
nextAction(ua2, nil).
prevAction(ua2, ual).

parent (ua2, oal).

Figure 5.22: Action information for how to remove the screw

99

% Knowledge for opening the panel

*A (postcondition(A, configuration(panell, state(open))) ->
U3 ?S(subactions(A,S),
postcondition(S, configuration(screwl,location(awayFrom(hole1)))))).

*A (postcondition(A,configuration(screwl,location(awayFrom(holel))))

-> U2 7S7?N (subactions(A,S),
postcondition(S,configuration(screwl,state(loose))),
nextAction(S,N), motion(N,screwl,translational),
pathEnd (N, awayFrom(holel)), nextAction(N,nil))).

*A *0 (type(0,screw), motion(A,0,rotational) ->
Ul instrument (A, screwdriver)).

*A *0 (postcondition(A,configuration(0,state(open))) ->
P1 complex(A)).

Figure 5.23: Agent knowledge for Step 1

The assumed knowledge of the different agent types with respect to this action is shown

in Figure 5.23. These rules state that:

e advanced agents know that opening the panel involves the sub-action of removing

the screw;'?

e beginner agents know that removing the screw involves a set of sub-actions for loos-

ening the screw and taking it out of the hole;

e novice agents know that opening a panel involves taking away its cover and that

turning a screw involves a screwdriver;

e and finally, an action involving the opening of any object should be considered a

complex action for a novice agent.

Using this agent knowledge, SPUD can determine the most appropriate action description

for a1 when addressing a specific agent type.

9Even though advanced agents are at the top-level of agents, and thus none of the lower agent levels
would ever inherit knowledge from advanced agent knowledge, the potentially inheritable modal operator U3

100

DS(s,t-1,al)

/\

S(s,t-1,al,u)

NP(u)l IP(s,t_1,al)

Infl VP(s,t_1,al)l
|

present

step(al), agent(al,u), during(al,t_1), present(t_1)

Figure 5.24: Generation of Step 1 for Advanced, part 1

The generation instance to get SPUD to generate an action description for al for
advanced agents was given in Figure 5.19. It instructs SPUD to describe the action al
at time t_1 in a discourse segment so that the communicative goals concrete(al) and
termination(al) are satisfied. The generation process begins with a tree with a single
substitution site, ds(s,t_1,a1). The only applicable discourse segment tree is ds1 (see
Figure 5.4), with a single substitution site for a sentence, s(s,t_1,a1,u). All the other
discourse segment trees have pragmatics which do not hold and therefore are not applicable.
Next, a tree which applies to a sentence node must be selected. In this case, present (t_1)
holds, so the simpleS tree (see Figure 5.5) is chosen and added to the tree. At this point,
the current tree and its associated semantics are as shown in Figure 5.24.

Next the verb open is chosen, since it furthers the description the most and satisfies the
communicative goals. Once the verb phrase has been substituted, only the noun phrases
remain to be filled in. The empty subject noun phrase is chosen because of its pragmatics
and a definite noun phrase (without a determiner; see Section 5.1.5) is substituted for the
object noun phrase. The resulting tree and its semantics are shown in Figure 5.25. Figure

5.26 shows the actual output window displayed by SPUD, indicating the order in which

is used instead of the private P3 modal operator in order to indicate that the predicated knowledge should
be considered objective (as opposed to subjective and therefore private) knowledge about the domain.

101

DS(s,t-1,al)

/\

stlalu

/\

P(s,t_1,al)

/\

Infl VP(s,t_1,al)
|
present ' NP(panell)

9]

panel

step(al), agent(al,u), during(al,t_1), present(t_1)
postcondition(al,configuration(panell,state(open)))
hearer(u), type(panell,panel)

Figure 5.25: Generation of Step 1 for Advanced, part 2

lexical items were added to the tree and the morphological processing that takes place (in
particular, the e and present “words” are erased).

The generation instance for the beginner agent type is shown in Figure 5.27. It is the
same as for the advanced agent type, except the shared modal operator information reflects
the agent type. The start of the generation process proceeds the same as in the generation
for the advanced agents, through choosing the verb. However, the semantics of open does
not satisfy the concreteness communicative goal, thus SPUD looks to add another lexical
item. In this case, it chooses to adjoin a means clause to describe how to do the high-level
action. The means clause (see Figure 5.10) adds the sub-action information needed to
satisfy the concreteness goal. After adjoining the means clause, the partial tree and its
semantics are as shown in Figure 5.28. The verb remove is added to the tree and the noun
phrases are filled in to finish the tree, resulting in the tree and semantics in Figure 5.29.

SPUD’s output is shown in Figure 5.30; morphological processing changes remove into its

—_

—_ —*

_ oOpen _.
open panel,
Open panel.
Open panel.

Figure 5.26: Output: Step 1 for Advanced

gen = {
name = { Step 1 for Beginner }
private = { S $ }
shared = { P2 (P2 present(t_1) -> §) }
describe = { ds(s,t_1,al) }
pattern = { ds(S,R,E) }
features = { O }
communicate = { concrete(al) termination(al) }

Figure 5.27: Generation instance: Step 1 for Beginner

103

DS(s,t-1,al)

S(s,t-1,al,u)
NP(u)l (s,t_1,al)
Inﬂ P(s,t-1,al)
present /\
VP(s,t_1,al) CVP(s,t_1_1,0al)

\|/ NP(panell)l Comp VP(s,t-1.1,0al)}
open b|y

step(al), agent(al,u), during(al,t_1), present(t_1)
postcondition(al,configuration(panell,state(open)))
subactions(al,oal), during(oal,t_1_1), starts(t_1.1,t_1)

Figure 5.28: Generation of Step 1 for Beginner, part 1

gerund form remowving.

The generation instance for Step 1 (see Figure 5.31) for novice agents includes addi-
tional communicative goals, reflecting the increased detail required in order for the agents
to be able to carry out the instruction. One type of communicative goal which has not
been mentioned before is one which indicates the action’s relations to other actions. In this
case, the communicative goal nextAction(oal,oa2) ensures that the agent will know the
existence and ordering of the sub-actions. The concrete and termination communicative

goals are included for actions at all levels, so that the generated instructions will provide

the agent with enough detail to perform the action.

104

DS(s,t-1,al)

S(s,t_1,al,u)
/////////\\\\\\\\\
NP (u) (s,t_1,al)
:
Inﬂ (s,t_1,al)
present /\
VP (s,t-1,al) CVP(s,t-1_1,0al)

V/I\Ranell) /\

| | Comp VP(s,t_-1_1,0al)
open N b| /\
| y NP (screwl)

panel | |
remove N

Screw

step(al), agent(al,u), during(al,t_ 1), present(t_1)
postcondition(al,configuration(panell,state(open)))
subactions(al,oal), during(oal,t_1.1), starts(t_1.1,t_1)
postcondition(oal,configuration(screwl,location(awayFrom(holel))))
hearer(u), type(panell,panel), type(screwl,screw)

Figure 5.29: Generation of Step 1 for Beginner, part 2

105

—

—_ =+

_ Open _,
_ open _ hy _.
_ open panel by _.
Open panel by _,
Open panel by removing _.
Open panel by removing screw,
Open panel by removing screw,

Figure 5.30: Output: Step 1 for Beginner

gen = {

name = { Step 1 for Novice }

private = { § § }

shared = { P1 (P1 present(t_1) -> $§) }

describe = { ds(s,t_1,al) }

pattern = { ds(S,R,E) }

features = { () }

communicate = { concrete(al) termination(al)
concrete(oal) termination(oal) nextAction(oal,oa?2)
concrete(ual) termination(ual)
concrete(oa2) termination(oa2) }

Figure 5.31: Generation instance: Step 1 for Novice

106

stlal

/\

stlalu
stlalu stlloalu
Comp S(s,t-1,al,u)
|
) /\
P(s,t_1,al)

/\

il VP(s.t_1,al)
|
present NP (panell)]
|

open

step(al), agent(al,u), during(al,t_1), present(t_1)
postcondition(al,configuration(panell,state(open)))
subactions(al,oal), during(oal,t_1.1), starts(t_1.1,t_1)

Figure 5.32: Generation of Step 1 for Novice, part 1

The generation process starts the same as in the previous examples. However, the
first lexical item chosen after the sentence tree substitution is the fronted purpose clause
tree (see Figure 5.13) since its pragmatics hold, i.e. P1 complex(al) can be proven. The
view of al as complex by the agent means that the high-level action needs to provide
a framework for interpreting the sub-actions, accomplished by the fronted purpose clause
construction. Once the adjunction is done, the verb open is chosen for the high-level action,
now in the fronted purpose clause. At this point, the partial tree and its semantics are

as shown in Figure 5.32. The simpleS tree is used at the substitution site in the main

107

S(s,t-1,al,u)

CS(s,t_1,al,u) S(s,t_1_1,0al,u)

Comp (s,t-1,al,u) /\

NP(u)l (s,t-1_1,0al)
t|0 /\

(u)d IP(s,t-1,al)
/\ Inﬂ s,t_1_1,0al)
Infl (s,t-1,al)
| present
present 7 NP(panell)] VP(s,t-1.1,0al) P(s,t-1.1,0al)

open \|/ NP (screw1)lComp VP(s,t_1.1_1,ual)l
|

remove by

step(al), agent(al,u), during(al,t_1), present(t_1)
postcondition(al,configuration(panell,state(open)))
subactions(al,oal), during(oal,t 1_1), starts(t_1.1,t_1)
agent (oal,u)
postcondition(oal,configuration(screwl,location(awayFrom(holel))))
subactions(oal,ual), during(ual,t_1.1.1), starts(t_.1.1.1,t 1.1)

Figure 5.33: Generation of Step 1 for Novice, part 2

clause; the pragmatics of present (t_1_1) can be proven using the rules for reasoning about
subintervals given in Section 4.4.2. Next, the verb for the sub-action, remowe, is chosen
and added to the tree, but more detail than this is needed about the sub-action. A means
clause is adjoined to the verb phrase for the sub-action to indicate how to remove the screw,
which a novice agent does not know how to do. After these additions, the partial tree and
its semantics are as shown in Figure 5.33 (the discourse segment node of the tree is omitted
due to space constraints). Next, the second sub-action is added by adjoining another verb
phrase using and then (see Figure 5.15). For the first sub-action, path direction does not
need to be added since the agent’s knowledge includes the general knowledge that standard

screws are turned counterclockwise. However, termination information needs to be added

108

to the action information in the means clause, in order to satisfy the termination(ual)
communicative goal. In this case, an until clause is adjoined to express the sub-action’s
post-condition. Due to the size of the resulting tree, it is not shown in graphical format;
instead, the SPUD output window is shown in Figure 5.34.

As discussed and illustrated, the generation process produces different instructions
for the different agent types using the same action information. The instructions vary
in the amount and presentation of action information. Agent expertise knowledge, i.e.
knowledge predicated with the U1, U2, and U3 modal operators, determines which pieces
of action information need to be included in, or omitted from, an action description for a
particular agent type. This accounts for the varying level of detail seen in the generated

instructions, summarized below ((a) for advanced, (b) for beginner, and (n) for novice):
(24) (a) Open panel.
(b) Open panel by removing screw.

(n) To open panel, remove screw by turning screw until screw is loose and then

Tremouve Cover.

Beyond the level of detail, however, the presentation style changes from agent type to agent
type, depending on how the agents view the action to be done. The instruction generated
for novice agents uses a fronted purpose clause to address the novices’ view that opening an
object is a complex action. In the discussion of the remaining steps of the task, the stylistic
differences between the instructions for the different agent types will be highlighted, as will
the differences in the level of detail. Much of the generation of the instructions for the
second and third steps follows the same general course as that discussed in this section,

and thus the following discussions do not go into the same level of detail.

5.4.3 Normalizing the pressure

The second step in restarting the pump is to normalize the pump’s pressure, which is
too high. This step is much simpler than the previous one, involving only one basic sub-
action. The action information for this step is shown in Figure 5.35. Notice that an explicit

purpose relation exists between the main action (a2) and its sub-action (na1); this means

109

rAdaaod anowad Uayi pue =007 =T mMaJdds TTI3UN Madds BUTULND mﬂ Ma.JldE andwa.d
TAdan0d aa0wad U3yl pUE 2007 ST MaJLIs JT3UN MaJds SEUTULND mﬂ Malds anoula.d
fdanod anowsd uayl pue T

“Taued uado o]
“7aued uado o)

ST M3423 TTIUN Malds 3uTudny Ag madds asowald “Taued uado o

*1EA00 SaA0Wad Usyl pue T =T T TTIUN malas Sutudngy Rg melos saowad fToued usdo o)
*A8n02 aadwad uayl pue T 7TIUN ME42s BUTULng g madds snowsd “Taued usdo o)
*Aan0d sa0wWal WSyl pue T TTIUN T BUTULNg Ag m3lds saadwald “Taued usdo o)

tlaaod asowad Juayly pue
tJlaaod asowad Jdayl pue
fdanod aaowad uayl pue

Ao mados asowsd “Taued uado o
Fg mados apowad — “Taued uado o]

tlana0d Saowal U3yl pue T RQ mados asowad T “Taued wado T oo
*T oanowad uayl pue T Ag mados arowsd T “Taued uado T oo
YT oanowad uayl pue T Rg T asowad T f“Taued uado T o]
*Touayy pue T Rg T aaowald T fTaued uado T o)

*T Rg T oasowal T fTaued uwado T o]

*T oanowad T fTaued uado T o]

*T T <Taued uado T o
*T o fTeued uado T oo
*TOfT uado T oo
S -1

BUTUANg Ag mados asowad “Taued uado o)

Figure 5.34: Output: Step 1 for Novice

110

=

Action: a2

step(a2).

during(a2, t_2).
result(a2, t_3).
meets(t_3, t_2).
agent (a2, u).
postcondition(a2, configuration(pressurel, state(normal))).
subactions(a2, nal).
nextAction(a2, a3).
prevAction(a2, al).
parent (a2, a).

MM NN nnnnn nn d N1

=

Action: nal

substep(nal,a?2).

during(nal, t_2_1).
starts(t_2_1, t_2).
finishes(t_2_1, t_2).
result(nal, t_3).

agent(nal, u).

motion(nal, diall, rotatiomal).
pathDir(nal, cw).
postcondition(nal, configuration(gaugel, state(within(rangel)))).
purpose(nal, generate(a2)).
nextAction(nal, nil).
prevAction(nal, nil).
parent(nal, a2).

M n unumnw nnw n Q n nn L2

Figure 5.35: Action information for normalizing the pump’s pressure

that the action of turning the dial clockwise until the pressure gauge registers normal
pressure generates (directly accomplishes) the action of normalizing the pressure.

The agent knowledge for this step is shown in Figure 5.36. Advanced agents know
that an action involving normalizing the pump’s pressure has a sub-action with the post-
condition of having the pressure gauge be in the normal range. Beginner agents know that
getting the gauge within the normal range involves turning the dial in its turnable direction.
Since advanced agents should also be assumed to know this, it is predicated with the U2

modal operator and therefore is inherited by the modal operator for advanced agents. In

111

*A (postcondition(A,configuration(pressurel,state(normal))) ->
U3 7?S(subactions(A,S), nextAction(S,nil),
postcondition(S,configuration(gaugel,state(within(rangel))))

).

*A (postcondition(A,configuration(gaugel,state(within(rangel)))) ->
U2 motion(A, diall, rotatiomnal)).

*A *0 (type(0,pressure), postcondition(A,configuration(0,state(normal)))
-> P2 purpose(A)).

*A x0 (type(0,pressure), postcondition(A,configuration(0,state(normal)))
-> P1 complex(A)).

Figure 5.36: Agent knowledge for Step 2

—

— —

normalize _.
normalize pressure,
Hormalize pressure,
Hormalize pressure,

Figure 5.37: Output: Step 2 for Advanced

terms of how agents view the action of normalizing pressure, beginner agents view it as
being an action which serves as the purpose for doing other actions (P2 purpose (A)) and
novice agents view it as being a complex action (P1 complex(A)).

The generation instance for advanced agents for Step 2 is the same as for Step 1, except
t_1 is replaced by t_2 and al by a2. The generation process is also similar, as evidenced by
the SPUD output window shown in Figure 5.37. (The lexical entry for the verb normalize
is shown in Figure 5.38.)

The generation instance for beginner agents is shown in Figure 5.39. It is similar to the

one for Step 1, except for the communicative goals. In this case, the goals of concrete and

112

word = { name = { normalize }
site = { vp(S,R,E) }
semantics = { during(E,R),
postcondition(E, configuration(0, state(normal))) }
pragmatics = { abstract0bj(0) }
trees = { transitiveVP(S,R,E,0) }
1.
Figure 5.38: Lexical entry for normalize
gen = {

name = { Step 2 for Beginner }

private = { § § }

shared = { P2 (P2 present(t_2) -> §) }

describe = { ds(s,t_2,a2) }

pattern = { ds(S,R,E) }

features = { OO }

communicate = { concrete(a2) termination(a2)
concrete(nal) termination(nal) }

Figure 5.39: Generation instance: Step 2 for Beginner

termination are added for the sub-action nal to ensure that it is described appropriately.
The unique feature of the generation process is that the beginner agents’ view of the main
action as a purposive action guides SPUD to use the ds3 discourse segment tree (see
Figure 5.11) to put the sub-action in the main clause of the sentence. Then the non-
fronted purpose clause (see Figure 5.12) must be used to express the purpose relation and
the action information for the main action. SPUD’s output, shown in Figure 5.40, shows
the result of the generation process.

The generation instance for novice agents is the same as for beginner agents, except
for the use of the P1 modal operator instead of P2. As in the generation of the Step 1

instructions for the novice agents, the fronted purpose clause construction is used to reflect

113

u—

Turn _.
Turn _ to _.
Turn _ to normalize _,
Turn dial to normalize _.
Turn dial to normalize pressure,

Turn dial to normalize pressure.

Figure 5.40: Output: Step 2 for Beginner

word = { name { clockwise }

decl

= { beta(S,R,E) }
site = { vp(8,R,E) }
semantics = { pathDir(E, cw) }
trees = { bVPadv(S,R,E) }
1.
Vp(S7R’7E)
Tree entry: N
vp(S,R,E), o

Figure 5.41: Lexical entry for clockwise

114

the novices’ view of the main action as complex. The result of the generation process is

shown in Figure 5.42. (The lexical entry for the adverb clockwise is shown in Figure 5.41.)

Even though Step 2 is a simpler action than Step 1, the generated instructions again
vary in terms of the amount of action information presented to different agents as well as

the style of presentation:

(25) (a) Normalize pressure.
(b) Turn dial to normalize pressure.

(n) To normalize pressure, turn dial clockwise until gauge is within normal range.

One main point that the generation of Step 2 demonstrates is that SPUD’s decision as
to what will be the head of a construction (i.e. a high-level action versus a sub-action)
depends on agent-specific features. Beginner agents’ purpose view of the top-level action
produces a sentence with a standard non-fronted purpose clause. Otherwise, the generation

processes for the two steps are the same.

5.4.4 Starting the pump

The final step in restarting the pump, namely that of actually starting the pump, is
similar to Step 1 in terms of its action/sub-action structure (see Figure 5.18). The action
information is shown in Figure 5.43. The first sub-action, resetting the pump, has two sub-
actions of its own: raising and holding the lever (see Figure 5.44). The second sub-action
in the step, like its counterpart in Step 1, is a leaf in the action tree. However, unlike in
Step 1, it has an explicit purpose relation to the main action. This difference, along with
the differences in agent knowledge, results in instructions which differ in form from those

in Step 1. The resulting instructions for Step 3 are:
(26) (a) Start pump.
(b) To start pump, reset pump and then press ON button.

(n) Reset pump by moving lever to RESET position and then holding lever until
the light is green. Then press ON button to start pump.

115

*EEUEL TEWJOU UTYZTM ST S2ned TT3UN SSTMHO0TD [ETR Wding “sdnsssdd SzZTTEWlol O
*EEUEL TEWIOU UTYZTM ST 82ned TT3UN SSTMHI0TD TETR Uding “sdnsssdd S=ZTTEWlOU O
*ZEUEL UTYSTM =T 83NEE TTIUN SSTHMY{20TD TETH UW4Ng3 “Sdanssadd szTlewloul o]
*TOUTYZTM ST 8ENES TTIUN SSTMHDO0TD TETR Ulng “S4nsssld s=ZTTEWlOU O
*T =T 23NEE TTIUN SSTHMHI0TD TETP UWANg3 “Sdanssadd SzTlewlol o)

*T =T T OTTIUN SSTMHOOTD [ETR Wlng “Sinsssdd SZTTEWlOU O]

*TOITIUN SETMYIOTD TETR WAnd “sdanssadd SZTTEWlOU O

*TOTTIUN SETMHIO0TD Uang “sanssadd SzTTEwdou o)
*IETMHIOTD T oWdng ‘Sanssadd S@TlEWlOU O]
*Toudng “sdanssodd 2zTTEWlOU O
*T “gansssdd szTTEWIOU O]

*T T “gunsssdd SzTTEWLOU O

*T “gansssdd szTTEWIOU O

*T fgansssdd SZTTEWLOU T O]
*TOAT gETTewdou T oo
* - - DI_I

Figure 5.42: Output: Step 2 for Novice

116

= MM nnwnnn »nn 1 2 R N NN nnun wn 2 N L

N NN n ninunuoun NN 2 22 L1 1

Action: a3

step(a3).

during(a3, t_3).
result(a3, t_4).
finishes(t_3, t).
agent (a3, u).
postcondition(a3, configuration(pumpl, state(running))).
subactions(a3, sal).
nextAction(a3, nil).
prevAction(a3, a2).
parent (a3, a).

Action: sal

substep(sal,a3).

during(sal, t_3_1).

starts(t_3_1, t_3).

result(sal, t_3_2).

agent(sal, u).

postcondition(sal, configuration(pumpl, state(reset))).
subactions(sal, ral).

nextAction(sal, sa2).

parent(sal, a3).

Action: sa2

during(sa2, t_3_2).
meets(t_3_2, t_3_1).
finishes(t_3_2, t_3).
result(sa2, t_4).

agent(sa2, u).

force(sa2, buttonl).
magnitude(sa2, greater(resistance(buttonl))).
pathDir(sa2, inDir(buttonl)).
purpose(sa2, generate(a3)).
nextAction(sa2, nil).
prevAction(sa2, sal).

parent (sa2, a3).

Figure 5.43: Action information for starting the pump

117

= N NN nnwn O N 1 s

N NN nw un n nn n Q n nn Y

Action: ral
during(ral, t_3_1_1).

starts(t_3_1_1, t_3_1).
result(ral, t_3_1_2).

agent(ral, u).

motion(ral, leverl, translational).
pathEnd(ral, at(resetPosl)).
nextAction(ral, ra2).
prevAction(ral, nil).

parent(ral, sal).

Action: ra2
during(ra2, t_3_1_2).
meets(t_3_1_2 3_1_1)
finishes(t_3_ t_3_1).
result(ra2, t_3_2).
agent(ra2, u).

force(ra2, leverl).
magnitude(ra2, weight(leverl)).

pathDir(ra2, oppositeDir(gravity)).

postcondition(ra2, configuration(lightl, color(green))).
nextAction(ra2, nil).

prevAction(ra2, ral).

parent(ra2, sal).

» T_
-2,

Figure 5.44: Action information for resetting the pump

118

*A (postcondition(A, configuration(pumpl, state(running))) ->
U3 7S?N(subactions(A,S),
postcondition(S,configuration(pumpl,state(reset))),
nextAction(S,N), nextAction(N,nil),
force(N,buttonl), magnitude(N,greater(resistance(buttonl))),
pathDir(N,inDir (buttonl)))).

*A (postcondition(A, configuration(pumpl, state(reset))) ->
U2 ?S?N(subactions(A,S),
motion(S,leverl,translational), pathEnd(S,at(resetPosl)),
nextAction(S,N), force(N,leverl), pathEnd(N,at(resetPosl)),
pathDir (N,oppositeDir(gravity)), magnitude(N,weight(leverl)),
postcondition(N,configuration(lightl,color(green))))).

*A (postcondition(A, configuration(pumpl, state(running))) ->
P2 complex(A)).

*A (postcondition(A, configuration(pumpl, state(running))) ->
P1 elaborate(A)).

Figure 5.45: Agent knowledge for Step 3

The agent knowledge for Step 3 is shown in Figure 5.45. Advanced agents know that
starting the pump involves resetting the pump and then pressing the ON button. Beginner
agents know that resetting the pump involves raising the control lever to the RESET
position and holding it until the status light turns green. As in the previous step, novice
agents do not have any experience with actions like the top-level action. However, novice
agents can be assumed to view such actions as elaborate. Beginner agents also have a
particular view of such actions, in this case as complex actions. Both of these views are
due to the fact that the main action has two full-fledged sub-actions (i.e. they not inferable
from the top-level action by beginner and novice agents).

Many new verbs are needed for the generation of this step’s instructions. These are
shown in Figure 5.46.

The generation instance and generation process are as expected for the advanced agent

type; the result is shown in Figure 5.47. The generation instances for beginners and

119

word = { name = { start }
site = { vp(S,R,E) }
semantics = { during(E,R),

postcondition(E,configuration(0,state(running))) }

pragmatics = { type(0,pump) }
trees = { transitiveVP(S,R,E,D) }

word = { name = { move }
site = { vp(S,R,E) }
semantics = { during(E,R), motion(E,0,translational) }
pragmatics = { property(0, movable, true) }
trees = { transitiveVP(S,R,E,0) }

word = { name

I
—~—

hold }

site = { vp(S,R,E) }
semantics = { during(E,R), force(E,0),
magnitude (E,weight (0)),
pathDir (E,oppositeDir(gravity)) }
trees = { transitiveVP(S,R,E,D) }

word = { name { press }

site = { vp(S,R,E) }

semantics = { during(E,R), force(E,0),
magnitude (E,greater (resistance(0))),
pathDir (E,inDir(0)) }

trees = { transitiveVP(S,R,E,0) }

Figure 5.46: Verb entries for Step 3

120

p—

—_ =+

ztart _,
start pump.,
Start pump,
Start pump.

Figure 5.47: Output: Step 3 for Advanced

novices are shown in Figure 5.48. The communicative goals again reflect the detail needed
in the instructions for the less experienced agents.?’ In terms of generation, since beginner
agents view the main action as complex, the fronted purpose clause construction is chosen
to emphasize the main action and allow the sub-actions to be expressed in the main
clause. The and then lexical item for conjoining verb phrases is chosen to add the action
information for the second sub-action. The result of the generation for beginner agents is
shown in Figure 5.49.

Finally, novice agents’ view of the main action as elaborate guides SPUD to choose the
discourse segment tree with two substitution sites for sentences, the second one introduced
by “Then” (see Figure 5.16). Each sub-action is described in its own sentence, allowing
for shorter sentences because each sub-action requires detailed description. The first sub-
action is described by using a means clause to express how to accomplish it and and then to
conjoin its two sub-actions. A purpose clause expressing the main action is adjoined to the
verb phrase for the second sub-action, thus providing the necessary termination information
to satisfy the termination(sa2) communicative goal. The result of the generation is

shown in Figure 5.50.

Due to peculiarities of interacting goals, the purpose goal in the generation instance for novices was
needed instead of the concrete and termination goals for sa2.

121

gen = {
name = { Step 3 for Beginner }
private = { § § }
shared = { P2 (P2 present(t_3) -> §) }
describe = { ds(s,t_3,a3) }
pattern = { ds(S,R,E) }
features = { OO }
communicate = { concrete(a3) termination(a3)
concrete(sal) termination(sal) nextAction(sal,sa2) }

gen = {

name = { Step 3 for Novice }

private = { § § }

shared = { P1 (P1 present(t_3) -> §) }

describe = { ds(s,t_3,a3) }

pattern = { ds(S,R,E) }

features = { OO }

communicate = { subactions(sal,ral) nextAction(sal,sa2)
concrete(ral) termination(ral) nextAction(ral,ra2)
concrete(ra2) termination(ra2)
purpose(sa2,generate(a3)) }

Figure 5.48: Generation instances: Step 3 for Beginner and Novice

122

To _

To start pump-
To =start pump.

Tao
To _

To =start pump-

To =tart pump-

To =tart pump-

To =tart pump.

J—1

—_ —

start _.
ztart pump.

—_
—
J—1

—

_ rezet _,

_ rezet _ and then
rezet pump and then
rezet pump and then

—1

J—1

—_

To start pump.

reszet pump and then press _,

To =tart pump.

rezet pump and then pressz button,

To s=tart pump. reset pump and then press O button,
To =tart pump. res=et pump and then press ON button,

Figure 5.49: Output: Step 3 for Beginner

5.5 Discussion

The agents’ views and experiences are reflected in the variety of form and detail in the
generated instructions. SPUD makes such a variety attainable with little extra effort
beyond that required for generating only one instruction per action instance. Nearly all
of the generated instructions described in this chapter have been produced by SPUD
with the report “derivation completed successfully” (see Figure 5.17). The less-than-
successful report by SPUD for instructions which seem to be fine is due to peculiarities in
proving some communicative goals included in generation instances. Since the appropriate
instructions are generated, working out why they do not receive SPUD’s stamp of approval
has not been a top priority. As could be expected from the variety in complexity of the
generated texts, computational times for the generation of the texts differ considerably.

The instructions for advanced agents, which are simple, generally take a couple of minutes,

while the complex instructions for novice agents can take up to a half hour to generate.?!

2ISPUD was run on a multi-user Sun server. Computation times include non-user (i.e. program) time
for system tasks. No detailed information about computation times was collected as this is not a focus of

123

“dimd - FyR o wm---e yg o RRA L LAy cwAa FosT RS TTim o aAnST FLTRTOY 1A) e onTo T 13534 07 dAasas RBaTterm B odon D jaRay
telune Z_Eq® 0% wozz-e pg soe_d Ley] cues_E =T ydTT T1aun LensT SLTpToy U3gq pue UoOTITECe J353H 23 JeaeT SaTecw Fg ocdund qezey
tgund 9JE3E 03 42997 WO 238Je WeL_ T =T QYSTT TTILT JeasT SJITETOY USI FLE UOT3TIIz]353Y 0 JECET AUTADA b didnd Zasey
Sdane 3AEGES O LCAANG [0 SESdd woy) 2T TTIAR Jon0T BATOTCH UOMT 24T UOTETE0d |ITC3H 04 -2A0T BUTa0n Fooone 3330:

trwod gangs oy oweggny o wwwad e T g St BULR de b e oo g lwed | Fouy Awae | Sutaog Bgocw oo ey
“dend 9 #2qF 0y wngtes g RRAG D R YT T aARAT RaTopo vAayy Ak unT TRl e aAaRAT Rareon Fig o lene qasey
Sdund JuElE 03 1423379 RO S55Ju uSy_ T TTIUn J4aa3T SuTproy usgy pue T oI JEcaT BuTaoa oodund

“dane 3JE3E 0 LOIGNG RO FEEJd WeLy_ T [TIUN GITETOY WSYZ FLE ~ 0% _3rE] SUTnod -G dine 333S.
dwmd AJEaE 29 Loaany 4] £€0dd WD4] T TTAUN ELTRTOY U34d pue - ZuTaoU 53 ound 3080y

tolwnd Lowyw oug ouue LIl wewad camn | T Raruey wweg Udw 7o T 2aivow Fig dans ey
dumd goegu Un oy) s we e LW CToLamyy pue Tooy T Buaow Foodwnd _daay
“unvd jaEms ory AN B RRAd m] fT oA T Fataon fig la TAaRAY
Polumiel ZoS9% 03 WOIZIFG RO SFe-d Leyl T S4Tecw g dwnd qesey

Soand 3ABaE 0T Jo3and [0 Sao oy T Fe dwnd
dare JAEgE 3D Loggng |7 SESdd way) o Ag 30
toew i cgawoy oy oueeggny o wwwad uag) T
duwd - == oAy umtTan g oRRAa D AL
C3 W0aang pC SEedd ase] T
T 23 Logang 4] ssedd usy] T
ToozoLeagny |43 SESdd woyg v
T oag LIy o wwwddd ey
‘ZLJ..rr_ll_:.._._._l

Al |

- a7 LN s

TToog T omes_d T ouey_ T

T ooouad Loy] -
. TR
= uaqy

1ce

Output: Step 3 for Novi

Figure 5.50

124

Overall, the implementation in SPUD has been very successful.

SPUD’s generation of the example instructions has demonstrated its generation al-
gorithm as well as how the domain, agent, and action information all come together to
enable the generation of tailored, effective instructions. The implementation of the lan-
guage model for SPUD has involved specifying lexical items and their syntax, semantics,
and pragmatics. The lexical items range from individual words to discourse segments,
giving SPUD the flexibility to determine the structure of the generated text at all levels.
By including agents’ view of actions as part of the agent model, the pragmatics for lexical
items can take account of the agent’s view in deciding how to present a complex action.
SPUD uses this pragmatic information when choosing lexical items to include in a descrip-
tion. In this way, SPUD tailors the descriptions to the agent. Communicative goals to
be satisfied by the generated text are included in the generation instances which start the
generation process. In checking if the communicative goals are satisfied, SPUD reasons
about the agent’s assumed knowledge and what information the current description pro-
vides to the agent. Thus, by specifying communicative goals relating to the concreteness
and termination of the actions being described, the instructions generated by SPUD are
effective and efficient.

In the course of implementing the language model, several issues arose which have been
incorporated into this chapter. First of all, working with a action/sub-action structure from
the top down means that syntactic trees have to be made such that the top-level action
can be moved to a subordinate clause if needed (e.g. to emphasize a sub-action by putting
it in the main clause). These are not the types of trees that are naturally intuitive to
design but they are needed in addition to traditional trees and lexical entries which focus
on the action described in the main clause as the main action to be described. Thus, the
two purpose clause trees (Figures 5.12 and 5.13) move the top-level action from the main
clause into a subordinate purpose clause.

Second, the implementation of stylistic preferences came from the need to “get around”
SPUD'’s greedy algorithm which picks the simplest lexical entry, given the same semantics.

Since instructions need to be described differently depending on agent expertise, these

the dissertation.

125

preferences (and the need to have them be private to each agent type) precipitated the
need for additional modal operators to serve as private agent knowledge, i.e. knowledge
that is not inherited through the experience level modal operators (U1, etc.). Using the
stylistic preferences, implemented in the form of agents’ views of actions, complex lexical
items which would not otherwise be chosen by SPUD are now used.

Lastly, the communicative goals included in each action instance had to be different,
reflecting the different levels of detail needed by different agent types. The problem with
specifying a uniform set of communicative goals is that SPUD does not have a notion of
partially satisfying a goal or of subgoaling. That is, each word has to completely satisfy
a communicative goal in order to be considered [Stone, personal communication]. Thus, a

rule such as
*A C (concrete(A), termination(A) —> howToDo(A)).

and the communicative goal of howToDo(A) cannot be used. Instead, the two separate
conjuncts of the howToDo(A) rule, namely concrete(A) and termination(A) must be
used as communicative goals. In addition, rules cannot be used to go down more than one

level in the action/sub-action tree. For instance, rules such as

*A xS C (subactions(A,S), concreteAll(S) -> concrete(A)).
C concreteAll(nil).

*A *N C (concrete(A), nextAction(A,N), concreteAll(N) -> concreteAll(A)).

are not effective in having the communicative goal concrete(al) ensure that the re-
sulting description will have the necessary concreteness information for al’s sub-actions.
Therefore, separate communicative goals for each sub-action must be stated in generation
instances.

Modifications to SPUD’s algorithm which might make implementing a language model
easier include changing its ranking method of possible additions to a tree and/or allowing
multiple possibilities to be left open. Changing the ranking method could be used to give
more weight to trees which provide more opportunities to include useful information later
on. Leaving multiple options open when choosing which lexical item to add next could give

the necessary flexibility when handling constructions with similar semantics. These and

126

other possible modifications to SPUD are described as part of the conclusions and further
work in Chapter 7. However, before concluding this dissertation, I present some related
work in the area of Natural Language Generation and compare it to this implementation

using SPUD.

127

Chapter 6

Related Work

Since my dissertation work involves a system for the generation of natural language in-
structions, comparing it to other such systems is the best way to distinguish its strengths
and weaknesses. Thus, comparisons of my approach using SPUD and that of other sys-
tems used for generating instructions given at the beginning of this chapter. However,
other generation approaches which do not directly address the generation of instructions
are also discussed later. Even though direct comparisons cannot be made, either because
the approach does not address instructions or because it is not a full system (or both),
comparisons with these approaches can also show the strengths and weaknesses of my

approach.

6.1 Instruction Generation Systems

Few of the instruction generation systems discussed below address the effectiveness of
instructions; none of them address termination information. Few of the generation ap-
proaches below address the use of hearer knowledge, especially the level of expertise of the
hearer, and few include the ability to reason about the world and the effects of instruc-
tions on the hearer. However, many address the importance of having a language-neutral

domain/action representation and some incorporate incrementality.! All of these issues

! Although not addressed in detail before, incrementality reflects a system’s ability to consider and adapt
to the information provided by partial descriptions.

128

— effectiveness, termination, hearer knowledge, reasoning, language-neutral domain rep-
resentation, and incrementality are the main points of discussion below. As such, each
system is given a rating to indicate the degree to which they address each of these issues.

A + that means the issue is addressed, a = means that the issue is addressed indirectly,
and a - means that the issue is not addressed at all in the considered literature for the
system. (A 7 is used when no determination either way could be made.) The order of the
issues is: effectiveness (termination), hearer knowledge (expertise levels), reasoning ability,
language-neutrality, and incrementality. The issues in parentheses will also be given a rat-

ing when their associated issue has a + or ~ rating. My approach to instruction generation

using SPUD would thus get a [+(+),+(+) ,+,+,+] rating.

6.1.1 COMET, 1990; rating:[-,-,~,+,+]

COMET [McKeown et al., 1990] uses Functional Unification Formalism (FUF), a declar-
ative and uniform representation, for domain and lexicon representation and unification
for lexical choice and generation of multi-media explanations. Unification incrementally
enriches the logical form determined by content planning until all aspects of the utterance
are considered, giving COMET the ability to produce efficient texts. COMET can apply
some reasoning, in the form of calling arbitrary code, in its generation process. However,
it does not consider hearer knowledge nor the effectiveness of the generated text. (See

[McKeown et al., 1993], described in 6.2, for an extension of COMET’s capabilities.)

6.1.2 EPICURE, 1992; rating:[~,”,-,+,+]

EPICURE [Dale, 1992] generates recipe instructions from a declarative feature-structure
representation. Although the work focuses mainly on generating referring expressions, in-
cluding determining when particular anaphoric forms (pronouns, reduced noun phrases,
etc.) are appropriate, the approach to generation is part of the inspiration for the SPUD
generator. A series of mapping algorithms transform semantic content into surface struc-
ture, making EPICURE incremental. It considers the ability of the hearer to understand

which object a referring expression refers to in the domain, but it has a simple view of

129

actions, reducing the complexity of actions found in the real world to state-change seman-
tics. It does not address the ability to reason about hearer knowledge, the world, nor the

effectiveness of the instructions beyond being able to identify the intended objects.

6.1.3 TECHDOC, 1994; rating:[~,~,+,+,-]

TECHDOC [Résner and Stede, 1994] generates descriptions and instructions needed for
maintenance activities. The description logic LOOM, supports some reasoning, is the
representation for text structuring information as well as domain knowledge, which is
language-neutral. Penman, a systemic-functional sentence-level generator, is used for sen-
tence planning and lexical choice. Penman consists of system networks which encode
various semantic and syntactic features and associated realization statements which indi-
cate that particular words or constructions are to be used. Penman does not seem to be
incremental in its generation, as a pass through the networks indicates the surface form
features which must be then reconciled with the grammar. Since TECHDOC simulates the
events it is to describe and updates the world model accordingly, the system is sensitive to
the state of the world, i.e. only relevant information is provided in instructions. However,
it does not address hearer knowledge nor the effectiveness of the instructions, beyond being

appropriate to the state of the world.

6.1.4 IDAS, 1995; rating:[~,+(+),~,-,7]

IDAS [Reiter et al., 1995] generates on-line technical documentation from domain knowl-
edge bases developed for design purposes (e.g. computer-aided design output). The action
representation for “deep” generation is case frames (roughly, predicate-argument struc-
tures), which by their very nature have a language bias. However, in order to lower costs
in terms of development time, it uses a hybrid action representation in the form of canned
text with embedded knowledge-base references and case frames with textual case fillers.
In this way, domain developers, who are not experts in knowledge representation, can
easily specify the language that goes along with the actions in the domain. A descrip-
tion logic representation is used for all information, including the grammar and lexicon.

Reasoning thus is possible but limited because the description logic is a KL-ONE type

130

object classification system, which only supports reasoning about objects and their place
in the classification hierarchy. SPL (sentence planning language) expressions are built from
content-determination output which is sensitive to user expertise.

Lexical choice follows [Reiter, 1991], which is an algorithm for choosing appropriate
noun phrases, and the generation is sensitive to the user model, which is provided as part
of the input. In [Reiter, 1991], nouns are chosen by searching for lexical units that are
known to the user, that truthfully describe the object, that convey sufficient information
to satisfy communicative goals, and that are maximal under a lexical preference function.
[Reiter, 1991] separates what the system knows from what it wishes to communicate to
the hearer. The algorithm relies on representing human mental categories, since the lexical
knowledge for individual users includes the lexicon and mental categories. (A one-to-one
mapping between concepts and words is not necessarily assumed to exist in the mind of the
hearer.) Communicative goals, such as identifying an object, are analyzed by a separate
component and given to the lexical choice algorithm as attributes to express. Lexical
preference is based on a bias towards basic-level and other preferred lexical units following
[Rosch, 1978].

One of the basic questions that can be asked of the system is how to perform a specific
action; other questions involve describing objects and relationships between objects in
the domain. Other than considering user expertise in content-determination and lexical
choice, the issue of the effectiveness of the instructions provided in response to the “how

to perform an action” questions is not addressed.

6.1.5 IMAGENE, 1995; rating:[" (") ,-,”,-,7]

[Vander Linden and Martin, 1995] uses a system network and sentence-building component
on top of Penman (see Section 6.1.3) to generate technical documentation. The focus of
the generation is on the realization of purpose expressions in instructions [Vander Linden,
1994]. Lexical choice (in this case, determining the grammatical form of purpose relations)
is done by system networks. The system networks, which encode decisions derived from
a corpus analysis of instruction manuals, make choices ranging in scope from discourse to

sentences and phrases. The action representation is in the description logic LOOM and

131

therefore some reasoning can be done by the system. However, the action representation
includes some lexical information and therefore is not language-neutral. Contextual fac-
tors include interpersonal as well as discourse factors; however, hearer knowledge is not
considered. Since the system is devoted to the realization of appropriate expressions of
purpose, the effectiveness of the generated instructions is addressed indirectly. As shown
in my approach using SPUD, purpose expressions are often used to convey information,

including termination, needed for performing actions.

6.1.6 GhostWriter, 1996; rating:[-,-,-,",7]

GhostWriter [Merchant et al., 1996] uses a knowledge-based model of plans and actions
in language-neutral form as basis for the semi-automatic generation of instructions. An
explicit fine-grained action representation is used, making it mostly language-independent.
However, actions can have a linguistically-oriented representation associated with them.
In addition, there are concept-lexeme mapping structures in the lexicon. Action schemas
are used for building a plan, which then can be used as input to the generator. The
author can manipulate the plan, have the system generate instructions for the plan, and
then post-edit the instructions by having the system re-generate parts of the instructions.
Hearer knowledge is not addressed, nor is the effectiveness of the generated instructions,

beyond the author’s intervention by post-editing.

6.2 Other approaches in Natural Language Generation

Below I describe other approaches in NLG which are either methods for generating in-
structions that are not part of complete systems or methods for generating other types of
texts which are related to instructions or which employ a user model. T only note what

the approaches do since these are not directly comparable to my implementation.

6.2.1 Paris, 1988

[Paris, 1988] describes TAILOR, a question-answering system in the domain of complex

patented devices. The goal of describing a device is to help the user construct a mental

132

functional model of it. The focus is on the content of the description, not its phrasing.
Two ways of describing objects were found: one centered around subparts of the objects
and the other around the processes which the objects can undergo. Which description
strategy to use depends on the user’s domain knowledge, since domain knowledge about
specific objects or basic underlying concepts can affect an object’s description. Users may
have global expertise, in the form of known basic concepts, as well as local expertise,
in the form of known objects. The description strategies can be mixed, based on the
user’s knowledge, by switching from one to the other at decision points in the Augmented
Transition Networks which determine the content to be realized in the generated text. In
this way, the kind of information, and not just the amount, in a generated text is affected

by the user’s level of expertise in the domain.

6.2.2 Mellish and Evans, 1989

[Mellish and Evans, 1989] present a system which generates text from plans produced
by the NONLIN planner, a non-linear planner, in the domains of cooking and mainte-
nance activities. The plans which form the input to the generator are formally defined
and domain-independent; they are non-linear action graphs and include the history of the
hierarchical expansion of the nodes during planning. The generation process uses simple,
well-understood, and restricted computational techniques such as recursive descent traver-
sal. The plans are converted into “messages” in the content-planning phase; messages
are a linguistically-motivated intermediate representation from which linguistic structures
are built using rules. The resulting texts explain the actions to be performed and why
they have to be done that way. [Mellish and Evans, 1989] states that the texts lack the
smoothness of natural text due to a number of factors, including that the plans have a
rich structure but not the kind needed for interesting Natural Language, that the plans
do not reflect “human” organization of actions, that the use of a restricted view of the
world which does not match up with natural semantics, and that the range of expressions

is restricted by the planner’s representation.

133

6.2.3 Bateman and Paris, 1989

[Bateman and Paris, 1989] describe an approach designed to ensure that the generated text
is appropriate for the intended audience. Since misphrased texts can be as ineffective as
texts which wrongly direct attention or rely on non-existent hearer knowledge, they point
out that beyond content determination, phrasing must be tailored to the specific user type.
They introduce a second phase of planning to take the given content and determine how
to control, as oppose to achieve, the appropriate phrasing. Registers, or specifications of
the linguistic consequences of using language in particular situations, encode the fact that
syntactic patterns and lexical features can be different for different user groups. They
construct sets of terms to use for each user group, where the user groups are system
developers, end users, and naive users of an expert system. Each group differs in its goals,
expectations, and expertise with the expert system and the domain. The registers control
how Sentence Planning Language (SPL) expressions are created and which grammatical
features are allowable; in turn, the SPL expressions control how the generator, Nigel,

produces text.

6.2.4 Scott and de Souza, 1990

[Scott and de Souza, 1990] rely on Rhetorical Structure Theory (RST) to structure sen-
tences and overall text. (RST is a method for describing relationships, i.e. rhetorical
relations, between spans of text.) They promote the use of accurate and unambiguous
markers (e.g. cue words) of rhetorical relations to make sure the intended message gets
across to the hearer despite the lack of a good hearer model. They use heuristics to im-
plement lexical choice with respect to choosing the most appropriate rhetorical relation to
lexicalize for the given semantic content. Thus, they indirectly address the effectiveness of
the generated text, but they do not address hearer knowledge since they assume the lack

of a good hearer model.

6.2.5 Rosner and Stede, 1992

As part of the TECHDOC project (see 6.1.3), [Rosner and Stede, 1992] approached the

problem of analyzing naturally occurring instructions (from car manuals) using Rhetorical

134

Structure Theory (RST). They point out several problems with using traditional RST
analyses on instructions. First, the RST idea of a “minimal unit” is unclear when it comes
to instructions; that is, is it a clause, a sentence, an entire instruction step? Second, more
than one rhetorical relation can often apply between two text spans in an instruction;
traditional RST disallows this possibility. Finally, RST is incapable of representing the
complex dependencies that appear in instructions. In attempting to overcome some of these
problems, [Rosner and Stede, 1992] propose new RST relations for the genre of instructions:
precondition, where the satellite proposition must be realized for the nucleus action to be
successful when carried out; until, where the nucleus action is carried out as long as the
satellite, the “stopping condition”, is not yet true (the stopping condition may result from
the nucleus action); and step-sequence, which is for the sequence of instruction steps which
make up a task (as opposed to a normal sequence relation which is for a sequence of actions
making up an instruction step). They encode domain knowledge and macrostructure
“schematas” in LOOM and attach methods to schemata objects for building RST trees,
which should be language-independent. They identify principles which make realizations
of the RST relations more acceptable and use them to choose the possible RST structure

with the highest preference after generating all such possible structures.

6.2.6 McKeown, Robin, and Tanenblatt, 1993

[McKeown et al., 1993] describes strategies in COMET (see above) to avoid using words
that are not known by the user. Since COMET is a multi-media explanation system, un-
known words are frequently disambiguated by accompanying illustrations. However, when
an illustration is not sufficient, COMET uses four strategies to avoid using unknown words:
selecting alternative words or phrases, rephrasing using conceptual definitions, rephrasing
using descriptive referring expressions, or using past discourse to construct a referring ex-
pression. Lexical choice is part of the text generator and it depends on the user model,
past discourse, syntactic form, and lexical constraints. The user model includes the user’s
reading level, unknown words, and wording preferences. Lexicon entries associate seman-

tic concepts with words used to realize them and the lexical choice algorithm determines

135

grammatical form based on semantic structure. If none of the strategies work to disam-
biguate an unknown word, the content planner must be reinvoked since different levels of

knowledge (i.e. coarse- vs. fine-grained) are represented separately in the knowledge base.

6.2.7 Kosseim and Lapalme, 1995

[Kosseim and Lapalme, 1995] address a restricted form of lexical choice, that of choosing
which rhetorical relations to use when mapping a semantic representation to a rhetorical
structure. Thus, they focus on the choice of linguistic constructions (e.g. those expressing
rhetorical relations, such as means or purpose) rather than on the choice of individual
words (except those associated with the linguistic constructions). They use heuristics,
derived from a corpus analysis, to determine the realization of two semantic carriers,
effects and guidances, as rhetorical relations. In that they address effects and guidances

in instructions, they indirectly address the effectiveness of the instructions.

6.2.8 Nicolov, Mellish, and Ritchie, 1996

[Nicolov et al., 1996] exploit the declarative relationship between a non-hierarchical se-
mantic representation, in the form of conceptual graphs, and a linguistically-motivated
syntactic representation. Conceptual graphs are a language-neutral domain representa-
tion. D-Trees, a variation of TAG, are used for the lexicon and grammar. Their approach
to generation involves incrementally finding mapping rules (semantics to syntax) to cover
as much of the semantics in a conceptual graph as possible while adding as little ezira
information to the resulting text as possible. Their method allows the linguistic realiza-
tion of a conceptual graph to be spread over multiple sentences. When the semantics
of paraphrases are the same, they employ syntactic/stylistic preferences to choose which
paraphrase to generate. In many ways, this approach is similar to that of SPUD, including
incrementality and the use of a TAG-based grammar. However, even though a language-
neutral domain representation is used, it is unclear whether conceptual graphs could fully
support the specification of actions like those used in the example domain implementation

in this dissertation.

136

6.3 Discussion

Why use SPUD as opposed to one of the other systems discussed in this chapter? As shown
by the ratings of the other systems, all of them fail to fully address certain issues that I
have argued as being essential to generation of effective instructions. Beyond my specific
contributions with respect to the action representation and what action information is
needed for effective instructions, what distinguishes my approach is SPUD’s strengths as
a generation system.

SPUD has a powerful reasoning system, based on an independently-motivated repre-
sentation (modal First-Order Logic). Not only does this support language-independent
reasoning about the domain, e.g. for planning or simulation purposes, it uses reasoning
to determine the information (and its consequences) conveyed to the hearer by partial
descriptions. Such reasoning, combined with the close coupling of syntax and semantics
in its language representation, produces effective and efficient texts, i.e. those that convey
the necessary information and only the necessary information. Since SPUD does sen-
tence planning and syntactic realization at the same time, the overall generation process
is flexible and efficient, responding to changes in domain and hearer knowledge with ease.

Despite its strengths, however, I encountered a few problems with SPUD in the imple-
mentation of the example domain (see Section 5.5). Therefore, in the concluding chapter, I
suggest how SPUD could be modified in order to expedite implementation and generation

of instructions, as well as other types of texts.

137

Chapter 7

Conclusions and Further Work

In this dissertation, I have supported my claim that the generation of effective instructions
relies on representing complete action information, ensuring that all necessary information
about an action is available from its description, and taking into account what the hearer
is assumed to know. I have presented a corpus study of maintenance instructions which
shows how one particularly vital piece of information, action termination, is expressed. I
have motivated an action representation based on insight gained about actions from the
corpus study as well as the representational needs of simulating agents carrying out similar
tasks. I have shown how knowledge about domains, actions, and agent expertise in the
domain can be represented and reasoned about by a modal first-order logic theorem-prover.
Finally, I have brought all of this work together by using the Natural Language generator
SPUD to generate effective instructions for different agent expertise levels.

In each of the areas that this dissertation addresses, I have made contributions to the
current research while relying on previous work of other researchers. In this chapter, I
summarize these contributions and raise some issues for further work. Overall, T believe
that this dissertation demonstrates the potential for a Natural Language Generation system
which produces effective instructions using an independently-motivated representation for
domains, actions, and agents as well as a linguistically-sound lexical representation.

The results of the corpus study discussed in Chapter 3 shows that termination infor-
mation is an important part of maintenance instructions. A third of the instructions in

the corpus have termination information supplied in some form other than the verb; the

138

actions described in these instructions do not naturally have termination. The simple ways
of expressing termination, such as verb arguments and prepositional phrases, dominate the
complicated ways (with the exception of purpose clauses) which add additional clauses.
Since purpose clauses can convey a variety of information, including purpose, manner, and
termination, using a purpose clause to convey multiple pieces of information is efficient.
Thus purpose clauses are used frequently even though they are syntactically complex. Ex-
pressing termination using verb arguments is syntactically simple, e.g. raise the lever, but
determining that particular verbs with particular arguments have termination information
is hard.! Thus, in the interest of being able to implement the results of the corpus analysis,
the syntactically complicated but semantically simple ways of expressing termination are
analyzed in more detail for inclusion in the implemented language model.

In particular, the analysis demonstrates how and why prepositional phrases, purpose

clauses, and until clauses are used to express termination, as summarized below.

Prepositional phrases: The prevalence of actions involving motion in the corpus of
maintenance instructions means that prepositional phrases are frequently needed
to express path information, particularly path endpoints for the termination of the
motion. Such prepositional phrases are semantically simple, simply adding the mo-
tion’s endpoint to the action information; in addition, they are syntactically simple,

requiring only an additional phrase (as opposed to a clause).

Purpose clauses: As mentioned before, purpose clauses can provide a variety of action
information. The corpus analysis includes means (“by”) clauses with purpose clauses,
since means clauses are express the same action/sub-action type of relation but in a
different syntactic order. Means clauses are used frequently since they express the

action(s) used to accomplish another action.

Although not noted explicitly in the corpus coding, two forms of the “to” purpose
clause, fronted and non-fronted, appear in the corpus. Fronted purpose clauses, at
the beginning of a sentence, provide a framework for describing and interpreting the

actions in the sentence’s main clause which accomplish the purpose. Non-fronted

'At the very least, reasoning about the interaction of action properties and arbitrary properties of the
domain would be required.

139

purpose clauses, on the other hand, simply express a local purpose role relating an
action directly to its purpose. This type of purpose clause can be used when both

the purpose and its accomplishing action are expressed simply.

Purpose clauses are syntactically complicated, adding another clause to a sentence.
However, they provide so much action information that using them in a description
reduces the effort in describing and interpreting the action description. Thus, purpose
clauses are used frequently in the corpus of maintenance instructions and are worth

the effort to include in the language model.

Until clauses: Finally, although until clauses do not appear frequently in the corpus,
they are one of the simplest ways of adding termination information to an action
description. By expressing a termination condition which indicates when to stop
performing an action, until clauses provide explicit termination. However, since this
is all they provide, with no other indication of how the termination information is
related to the performance of the action, they require additional work on the part of
the hearer to interpret. Therefore, this relatively simple way of providing termination
information is infrequent in the corpus but is included in the language model because

of its semantic simplicity.

Much more work needs to be done to understand all of the ways in which termination
information is expressed. Verb arguments, free adjuncts, expressions of manner, as well
as non-lexical sources of termination, all have to be explored in terms of their capacity
to express termination. The corpus study presented in this dissertation is a step in the
right direction, in addition to providing the basis for the implemented language model and
insight into what kind of action information needs to be represented.

While the action information needed by Natural Language instructions can motivate
an action representation, having an action representation which can be used easily in
other applications, such as planning or simulation, ensures that it is well-motivated and
independent of any theory of language. A Natural Language Generation system which
uses such a representation is more likely to succeed since without a language-neutral action

representation, a separate step would be needed to translate the source action information

140

(e.g. from a planning system) into the NLG system’s action representation. To avoid this
additional step and to simplify the generation process, the action representation should
supply the primitives for lexical representation as well as non-linguistic applications. By
adopting an action representation which is flexible and general enough to support both
types of representational needs, the need to develop and maintain disparate representations
disappears.

In Chapter 4, I presented an action representation (PAR) meant to be language-neutral
and universal, developed with researchers in both the simulation of virtual humans and
the semantics of Natural Language. The requirements for its structure come from the need
to represent all aspects of actions which are vital to their performance. This makes PAR
an ideal representation for the generation of effective instructions, since all the necessary
action information is represented. By translating PAR from its simple feature-structure
implementation to a first-order logic implementation, rules can be used to formalize rea-
soning about actions. In the implementation, rules formalize the ways in which termi-
nation information is derived from an action’s specification. In addition, rules about the
concreteness, or performability, of actions formalize reasoning required to ensure that an
action’s specification is adequate for its performance. In this way, reasoning about action
information has been formalized in a language-independent manner. While PAR and its
implementation in first-order logic have proven suitable for the implementation presented
in this dissertation, it would benefit from a more sophisticated action semantics, closer to
the dynamic semantics and tripartite structure discussed in Section 2.1. Changing PAR
to reflect this more formal treatment of actions would be a significant contribution in the
area of action representation and reasoning and is a topic for further work.

Taking advantage of the representational and reasoning power of modal first-order logic,
used by SPUD as its knowledge representation language, knowledge about agent expertise
has been encoded and provided to SPUD as described in Chapter 4. Modal operators
are used to predicate knowledge assumed to be known by certain types of agents and to
formalize the inheritance of knowledge, reflecting the accumulation of agent expertise with
experience. Three types of agents are implemented: novice, beginner, and advanced. Each

has its own knowledge of the domain, in addition to inheriting knowledge from the agent

141

type below it. In this way, agent models are built and given to SPUD to use in reasoning
about the best way to describe actions to particular agents.

In addition to domain, action, and agent knowledge, a language model has been imple-
mented for use by SPUD as described in Chapter 5. Using the same predicates as in the
domain, action, and agent representations, linguistic constructions have been encoded for
use in describing the maintenance activities considered in this dissertation. These include
entries for discourse segment structures, sentence structures, verbs, prepositional phrases,
purpose clauses, and wuntil clauses. Some of these entries are not linguistically intuitive,
since they are designed for descriptions which start with higher-level actions and need to be
rearranged to emphasize lower-level ones. The pragmatics for these entries indicate when
they are appropriate to use, so that SPUD can make intelligent decisions when choosing
lexical items to add to a description.

However, in order for SPUD to make the right decisions when choosing between seman-
tically similar constructions, more information must be provided. In this implementation,
knowledge about how agents are assumed to view certain kinds of actions is provided to
SPUD (Section 5.2.1). These views are implemented as knowledge predicated with private,
non-inherited modal operators; such knowledge is then used in the pragmatics of syntactic
constructions. With this guidance, SPUD chooses the most appropriate constructions de-
spite the fact that they might otherwise be overlooked in the generation process. This type
of guidance is essential given the way in which SPUD generates text. The implementation
of the stylistic preferences came late in the research process and further work would refine
and formalize their use.

This implementation has used SPUD as the Natural Language generator which pro-
duces effective instructions when given action information and rules about action termina-
tion and concreteness, the syntax and semantics of linguistics constructions derived from
the corpus analysis, and the knowledge that agents are assumed to have. In many areas
it exceeded my expectations in what it could do, but in some it fell short. In terms of
evaluating SPUD’s generation of instructions, I consider whether effective instructions,

with the form and level of detail appropriate for the particular agent, are generated to be

142

the primary criteria. Secondary criteria include SPUD’s status report for the final gener-
ated text and the computational time required for the generation. Using these evaluation
criteria, SPUD performed very well.

In terms of scalability of the implementation, what is most impressive is the relative
ease with which complex syntax and semantics could be encoded and used. New lexical
items and syntactic constructions could be added with little effort in order to implement
new constructions. In this way, more types of instructions could be included in the imple-
mentation. Similarly impressive is the power of SPUD’s theorem-prover, used for reasoning
about the effects of using particular linguistic constructions on the hearer’s knowledge. The
richness of the domain representation enables the formalization of agent expertise levels
as well as reasoning rules about action termination and concreteness, thus enabling the
reasoning about an instruction’s effectiveness. One issue that might affect scalability is
computational time, since the more facts and rules that make up the domain model, the
more time the theorem-prover could require to reason about the domain. Careful attention
to the encoding of rules could partially alleviate this potential problem. The generality
and power of SPUD’s knowledge representation (modal First-Order Logic) lends itself well
to increasing the complexity of the implemented domain or modeling a new domain. Such
reasoning power gives SPUD the flexibility to generate different instructions based on agent
expertise for the same action.

A problem arose in implementing the example domain and the corresponding instruc-
tions. Since SPUD considers the addition of only one lexical item at a time, any rules used
to reason about the addition of lexical items can in practice only justify one lexical item

at a time. A rule such as
*A C (concrete(A), termination(A) —> howToDo(A)).

cannot be used to ensure both the concreteness of an action’s specification and the inclusion
of termination information (as defined in Sections 4.3.2 and 4.3.3). Such a rule would
require the addition of multiple lexical items’ semantics to satisfy it. Since no single
lexical item’s semantics satisfies this rule, it could not be used to justify the addition of the
appropriate multiple lexical items. Complex communicative goals, such as howToDo (A) as

defined above, cannot be used in generation instances because of this property of SPUD.

143

Multiple communicative goals are thus required in generation instances, unpacking the
information so that SPUD can use it to generate the appropriate instructions.

Complex communicative goals, which simplify the specification of generation instances
but need multiple lexical items to satisfy, suggest opportunities for improving or extending
the way SPUD works. One possibility is to implement dynamic communicative goals, i.e.
goals that can be posted on the fly when reasoning about other goals. In this way, the
multiple communicative goals needed to provide the correct generation behavior would not
need to be specified in advance. Another way to achieve this would be to add a content-
planning component to SPUD, since communicative goals form part of the specification of
the content. SPUD was not designed to plan the content of the generated text [Matthew
Stone, personal communication] and so generation instances, used to tell SPUD what
content to convey, are meant to come from another, hopefully automated, component of
a Natural Language Generation system. Finally, a less drastic but more fundamental
change would be to modify the search algorithm that SPUD employs. SPUD currently
uses a greedy search algorithm which chooses the single best lexical item to add to the
current tree. Algorithms such as beam search, which explore multiple paths (in this case,
sequences of tree operations) simultaneously, could be used to give SPUD the ability to
look ahead for combinations of lexical items that would satisfy a complex communicative
goal. Any of these modifications could solve the problem of complex communicative goals
but implementing them would require much further work.

In the implementation described in this dissertation, I circumvented the problem of
complex communicative goals by using multiple communicative goals in the generation
instances for the example instructions. Using this hand-constructed content, which could
eventually come from an automated content-planner or dynamically-posted communicative
goals, I have shown how SPUD can be used to generate effective instructions, sensitive to
the inclusion of action termination and other information necessary for action performance.
I have also shown how SPUD can take an agent model, indicating an agent’s expertise with
the domain, and tailor the generated instructions to the agent, ensuring that the instruc-

tions are effective for that agent. In conclusion, this dissertation has demonstrated that

144

effective instructions can be generated when the right action information, agent informa-
tion, and language information are brought together and reasoned about in a Natural
Language generator which, most essentially, considers the effect of every word that it

includes in a description.

145

Bibliography

[Allen, 1983] J. Allen. Maintaining knowledge about temporal intervals. Communications

of the ACM, 26:832 843, 1983.

[Allen, 1984] J. Allen. Towards a general theory of action and time. Artificial Intelligence,
23:123-154, 1984.

[Badler et al., 1998] N. Badler, R. Bindiginavale, J. Bourne, M. Palmer, J. Shi, and
W. Schuler. A parameterized action representation for virtual human agents. In Work-
shop on Embodied Conversational Characters (WECC98), 1998. Lake Tahoe, CA, Oc-
tober 12 15.

[Badler et al., 1999] N. Badler, R. Bindiganavale, J. Bourne, J. Allbeck, J. Shi, and
M. Palmer. Real-time virtual humans. In Proceedings of the International Conference

on Digital Media Futures, Bradford, UK, 1999.

[Badler et al, 1997] Badler et al. Natural Language Text Generation from Task Networks
for Use in Automatic Generation of Technical Orders from DEPTH Simulations. Final

Report to Air Force HRGA, March 1997.

[Badler et al, 1998] Badler et al. Automating maintenance instructions. Final Report to

Air Force HRGA, March 1998.

[Bateman and Paris, 1989] J. Bateman and C. Paris. Phrasing a text in terms the user

can understand. In Proceedings of IJCAI-1989, 1989.

[Bleam et al., 1998] T. Bleam, M. Palmer, and K. Vijay-Shanker. Motion verbs and se-
mantic features in TAG. In TAG+4 Workshop, 1998. Philadelphia, PA, August 1 3.

146

[Dale, 1992] R. Dale. Generating Referring Ezpressions: Constructing Descriptions in a
Domain of Objects and Processes. ACL-MIT Press Series in Natural Language Process-
ing. MIT Press, 1992.

[Dang et al., 1997] H. Dang, J. Rosenzweig, and M. Palmer. Associating semantic com-
ponents with levin classes. In Proceedings of Interlinga Workshop, MTSUMMITY7, San
Diego, CA, October 1997.

[Dang et al., 1998] H. Dang, K. Kipper, M. Palmer, and J. Rosenzweig. Investigating
regular sense extensions based on intersective levin classes. In Proceedings of Coling-

ACLY8, August 1998.

[Di Eugenio and Webber, 1996] B. Di Eugenio and B. L. Webber. Pragmatic overloading
in Natural Language instructions. International Journal of Expert Systems, Special

Issue on Knowledge Representation and Reasoning for Natural Language Processing,

9(1), March 1996.

[Di Eugenio, 1993] B. Di Eugenio. Understanding Natural Language Instructions: A Com-

putational Approach to Purpose Clauses. PhD thesis, University of Pennsylvania, 1993.

[Dixon, 1987] P. Dixon. Actions and procedural directions. In Coherence and Grounding

in Discourse: outcome of a symposium, Fugene, Oregeon, June, 1984. J. Benjamins

Pub. Co., Amsterdam ; Phildelphia, 1987.

[Elhadad et al., 1997] M. Elhadad, K. McKeown, and J. Robin. Floating constraints in
lexical choice. Computational Linguistics, 23(2):195 239, 1997.

[Grice, 1975] H. P. Grice. Logic and conversation. In P Cole and J L Morgan, editors,
Syntaz and Semantics, volume 3: Speech Acts, pages 1 58. Academic Press, 1975.

[Hartley and Paris, 1996] A. Hartley and C. Paris. Two sources of control over the gener-
ation of software instructions. In Proceedings of the 34th Annual Meeting. Association

for Computational Linguistics, June 1996.

[How, 1993] K. Y. How. A Processing Framework for Temporal Analysis and Its Applica-
tion to Instructional Texts. PhD thesis, University of Edinburgh, 1993.

147

[ITL SIMA, 1997] ITL SIMA. Visual Interface to Manufacturing: Black&Decker/ITL Vi-
sualization SIMA Project. Web Site, 1997. http://speckle.ncsl.nist.gov/~sima/vim/.

[Joshi et al., 1975] A. Joshi, L. Levy, and M. Takahashi. Tree Adjunct Grammars. Journal

of Computer and System Sciences, 1975.

[Kosseim and Lapalme, 1995] L. Kosseim and G. Lapalme. Choosing rhetorical relations
in instructional texts: The case of effects and guidances. In Proceedings of the Fifth

European Workshop on Natural Language Generation, May 1995.

[McKeown et al., 1990] K. McKeown, M. Elhadad, Y. Fukumoto, J. Lim, C. Lombardi,
J. Robin, and F. Smadja. Natural language generation in COMET. In Robert Dale, Chris
Mellish, and Michael Zock, editors, Current Research in Natural Language Generation,

Cognitive Science Series, chapter 5. Academic Press, Harcourt Brace Jovanovich, 1990.

[McKeown et al., 1993] K. McKeown, J. Robin, and M. Tanenblatt. Tailoring lexical
choice to the user’s vocabulary in multimedia explanation. In Proceedings of ACL-93,

1993.

[Mellish and Evans, 1989] C. Mellish and R. Evans. Natural language generation from
plans. Computational Linguistics, 15(4):233 249, 1989.

[Merchant et al., 1996] B. P. Merchant, F. Cerbah, and C. S. Mellish. The GhostWriter
Project: a demonstration of the use of AI techniques in the production of technical

publications. In A. Macintosh and C. Cooper, editors, Applications and Innovations in

Ezpert Systems IV. SGES Publications, 1996.

[Moens and Steedman, 1987] M. Moens and M. Steedman. Temporal ontology in natural
language. In Proceedings of the 25th Annual Meeting of the ACL, pages 1 7, 1987.

[Moens, 1987] M. Moens. Tense, Aspect and Temporal Reference. PhD thesis, University
of Edinburgh, 1987.

[Mourelatos, 1981] A. Mourelatos. Events, processes, and states. In P J Tedeschi and
A Zaenen, editors, Tense and Aspect, volume 14 of Syntaz and Semantics. Academic

Press, 1981.

148

[Nicolov et al., 1996] N. Nicolov, C. Mellish, and G. Ritchie. Approximate generation from
non-hierarchical representations. In Proceedings of the Fighth International Workshop

on Natural Language Generation, 1996.

[Palmer et al., 1997] M. Palmer, J. Rosenzweig, H. Dang, and F. Xia. Capturing syntac-
tic/semantic generalizations in a lexicalized grammar. presentation in working session

of Semantic Tagging Workshop, ANLP-97, 1997.

[Palmer et al., 1999] M. Palmer, J. Rosenzweig, and W. Schuler. Capturing motion verb
generalizations with Synchronous TAGs. In Patrick St. Dizier, editor, Predicative Forms

in NLP. Kluwer Press, 1999.

[Paris, 1988] C. Paris. Tailoring object description to a user’s level of expertise. Compu-

tational Linguistics, 14(3), 1988.

[Passonneau, 1987] R. J. Passonneau. Situations and intervals. In Proceedings of the 25th

Annual Meeting of the ACL, pages 16 24, 1987.

[Reader’s Digest, 1991] Reader’s Digest. New Complete Do-It-Yourself Manual. Reader’s
Digest Association, 1991.

[Reiter et al., 1995] E. Reiter, C. Mellish, and J. Levine. Automatic generation of technical

documentation. Applied Artificial Intelligence, 9, 1995.

[Reiter, 1991] E. Reiter. A new model of lexical choice for nouns. Computational Intelli-

gence, 7(4):240-251, 1991.

[Rosch, 1978] E. Rosch. Principles of categorization. In Eleanor Rosch and Barbara B.
Lloyd, editors, Cognition and Categorization, pages 27 48. Erlbaum, Hillsdale, NJ, 1978.

[Rosner and Stede, 1992] D. Rosner and M. Stede. Customizing RST for the automatic
production of technical manuals. In Aspects of Automated Natural Language Generation

(6th International Workshop on NLG), 1992.

[Rosner and Stede, 1994] D. Rosner and M. Stede. Generating Multilingual Documents
from a Knowledge Base: The TECHDOC Project. In Proceedings of COLING’9/, 1994.

149

[Schabes, 1990] Y. Schabes. Mathematical and Computational Aspects of Lexicalized
Grammars. PhD thesis, Computer Science Department, University of Pennsylvania,

1990.

[Scott and de Souza, 1990] D. R. Scott and C. S. de Souza. Getting the message across in
RST-based text generation. In Robert Dale, Chris Mellish, and Michael Zock, editors,
Current Research in Natural Language Generation, Cognitive Science Series, chapter 3.

Academic Press, Harcourt Brace Jovanovich, 1990.

[Steedman, 1997] M. Steedman. Temporality. In J van Benthem and A ter Meulen, editors,
Handbook of Logic and Language. FElsevier North Holland, 1997.

[Stone and Doran, 1997] M. Stone and C. Doran. Sentence planning as description using

Tree-Adjoining Grammar. In Proceedings of ACL/EACL’97, pages 198-205, 1997.

[Stone and Webber, 1998] M. Stone and B. Webber. Textual economy through close cou-
pling of syntax and semantics. International Workshop of Natural Language Generation,

August 1998.

[Stone, 1997] M. Stone. Applying theories of communicative action in generation using
logic programming. In Proceedings of the AAAI 1997 Fall Symposium on Communicative
Action in Human and Machines, Cambridge, MA, November 1997.

[Stone, 1998] M. Stone. Modality in Dialogue: Planning, Pragmatics and Computation.
PhD thesis, University of Pennsylvania, 1998. Tech Report TRCS-98-23.

[Thompson, 1985] S. A. Thompson. Grammar and written discourse: Initial vs. final

purpose clauses in english. Text, 5(1-2), 1985.

[USAF, 1988] USAF. Organizational Maintenance Job Guide (Fuel System Distribution,
USAF Series F-16C/D Aircraft). Technical Order Manual, 1988.

[Vander Linden and Martin, 1995] K. Vander Linden and J. H. Martin. Expressing rhetor-
ical relations in instructional text: A case study of the purpose relation. Computational

Linguistics, 21(1):29 57, 1995.

150

[Vander Linden, 1994] K. Vander Linden. Generating precondition expressions in instruc-

tional text. In Proceedings of the 32nd Annual Meeting of the ACL, 1994.

[Vendler, 1967] Z. Vendler. Verbs and times. In Linguistics in Philosophy, pages 91 121.
Cornell University Press, 1967.

151

Appendix A

SPUD files

These are the full SPUD input files for this implementation.

A.1 Lexical items
%% Discourse segment entries

% Normal

word = {
name = { \. }
basic = { true }
decl = { alpha(S,R,E) }
site = { ds(S,R,E) }
match = { () }
semantics = { step(E), during(E,R) }
presupposition = { true }
pragmatics = { true }
trees = { ds1(S,R,E) }

}.

1]

1]

% Multi-sentence
word = {
name = { \. Then }
basic = { true }
decl = { alpha(S,R,E,R1,E1,R2,E2) }
site = { ds(S,R,E) }
match = { () }
semantics = { step(E), during(E,R), substep(E1,E), nextAction(El,E2),
during(E1,R1), during(E2,R2) }
presupposition = { true }
pragmatics = { elaborate(E) }
trees = { ds2(S,R,E,R1,E1,R2,E2) }
}.

% Purposive
word = {

152

name = { \. }

basic = { true }

decl = { alpha(S,T,P,R,E) }

site = { ds(S,R,E) }

match = { () }

semantics = { step(E), during(E,R), substep(P,E), during(P,T) }
presupposition = { true }

pragmatics = { purpose(E) }

trees = { ds3(S,T,P,R,E) }

%% Sentence entries

% Present tense action
word = {
name = { present }
basic = { true }
decl { alpha(S,R,E,A) }
site = { s(S,R,E,A) }
match = { () }
semantics = { during(E,R), agent(E,A) }
presupposition = { true }

pragmatics = { present(R) }
trees = { simpleS(S,R,E,A) }

% Present tense state

word = {
name = { present }
basic = { true }
decl = { alpha(S,R,configuration(0,P)) }
site = { s(S,R,configuration(0,P)) }
match = { () }
semantics = { configuration(R,0,P) }
presupposition = { true }
pragmatics = { true }
trees = { predS(S,R,configuration(0,P)) }

%% Verbs

word = {
name = { open }
basic = { true }
decl = { alpha(S,R,E,0) }
site = { vp(S,R,E) }
match = { () }
semantics = { during(E,R),
postcondition(E, configuration(0, state(open))) }
presupposition = { configuration(R, 0, state(closed)) }

pragmatics = { true }

153

trees = { transitiveVP(S,R,E,0) }

word = {
name = { remove }
basic = { true }
decl = { alpha(S,R,E,0) }
site = { vp(S,R,E) }
match = { () }
semantics = { during(E,R),
?L7?X(configuration(R, 0, location(L)), locObj(L,X),
postcondition(E,configuration(0,location(awayFrom(X))))) }
presupposition = { true }
pragmatics = { property(0, movable, true) }
trees = { transitiveVP(S,R,E,0) }

word = {
name = { move }

basic = { true }

decl = { alpha(S,R,E,0) }

site = { vp(S,R,E) }

match = { () }

semantics = { during(E,R), motion(E, 0, translational) }

presupposition = { true }

pragmatics = { property(0, movable, true) }

trees = { transitiveVP(S,R,E,0) }

word = {
name = { turn }
basic = { true }
decl = { alpha(S,R,E,0) }
site = { vp(S,R,E) }
match = { () }
semantics = { during(E,R), motion(E, 0, rotational) }
presupposition = { true }
pragmatics = { property(0, turnable, true) }
trees = { transitiveVP(S,R,E,0) }

word = {
name = { press }

basic = { true }

decl = { alpha(S,R,E,0) }

site = { vp(S,R,E) }

match = { () }

semantics = { during(E,R), force(E,0), pathDir(E,inDir(0)),

magnitude(E,greater(resistance(0))) }

presupposition = { true }
pragmatics = { true }

154

trees = { transitiveVP(S,R,E,0) }

word = {
name = { hold }

basic = { true }

decl = { alpha(S,R,E,0) }

site = { vp(S,R,E) }

match = { () }

semantics = { during(E,R), force(E,0), magnitude(E,weight(0)),

pathDir (E,oppositeDir(gravity)) }

presupposition = { true }

pragmatics = { true }

trees = { transitiveVP(S,R,E,0) }

word = {
= { normalize }
basic = { true }
decl = { alpha(S,R,E,0) }
site = { vp(S,R,E) }
match = { () }
semantics = { during(E,R),
postcondition(E, configuration(0, state(normal))) }
presupposition = { true }
pragmatics = { abstractObj(0) }
trees = { transitiveVP(S,R,E,0) }

name

word = {
name = { start }
basic = { true }
decl = { alpha(S,R,E,0) }
site = { vp(S,R,E) }
match = { () }
semantics = { during(E,R),
postcondition(E, configuration(0, state(running))) }
presupposition = { true }
pragmatics = { type(0, pump) }
trees = { transitiveVP(S,R,E,0) }

word = {
name = { reset }
basic = { true }
decl = { alpha(S,R,E,0) }
site = { vp(S,R,E) }
match = { () }
semantics = { during(E,R),
postcondition(E, configuration(0, state(reset))) }
presupposition = { true }

155

pragmatics = { true }
trees = { transitiveVP(S,R,E,0) }
}.

%% Prepositions

word = {
name = { to }
basic = { true }
decl = { beta(S,R,E,P,0) }
site = { vp(S,R,E) }
match = { () }
semantics = { pathEnd(E,P), locObj(P,0) }
presupposition = { true }
pragmatics = { true }
trees = { bVPpp(S,R,E,P,0) }

}.
word = {
name = { within }
basic = { true }
decl = { alpha(R,0,P,I,L) }
site = { pred(R,0,P) }
match = { () }
semantics = { configuration(R, 0, state(within(L))) }
presupposition = { true }
pragmatics = { true }
trees = { pp(R,0,P,within,L) }
}.

%% Adverbs

word = {
= { counterclockwise }

basic = { true }

decl = { beta(S,R,E) }

site = { vp(S,R,E) }

match = { () }

semantics = { pathDir(E, ccw) }

presupposition = { true }

pragmatics = { true }

trees = { bVPadv(S,R,E) }

name

word = {
name = { clockwise }

basic = { true }

decl = { beta(S,R,E) }

site = { vp(S,R,E) }

match = { () }

semantics = { pathDir(E, cw) }

156

presupposition = { true }
pragmatics = { true }
trees = { bVPadv(S,R,E) }

%% Nouns

word = {
name = { pump }

basic = { true }

decl = { alpha(X) }

site = { np(X) }

match = { (number singular; person third; gender neuter) }

semantics = { physicalObj(X), type(X, pump) }

presupposition = { true }

pragmatics = { true }

trees = { aTheNP(X), aANP(X) }

word = {
name = { panel }

basic = { true }

decl = { alpha(X) }

site = { np(X) }

match = { (number singular; person third; gender neuter) }

semantics = { physicalObj(X), type(X, panel) }

presupposition = { true }

pragmatics = { true }
trees = { aTheNP(X), aANP(X) }

word = {
name = { pressure }

basic = { true }

decl = { alpha(X) }

site = { np(X) }

match = { (number singular; person third; gender neuter) }

semantics = { abstract0bj(X), type(X, pressure) }

presupposition = { true }

pragmatics = { true }

trees = { aTheNP(X), aANP(X) }

word = {
name = { range }
basic = { true }
decl = { alpha(X) }
site = { np(X) }

match = { (number singular; person third; gender neuter) }

semantics = { abstract0bj(X), type(X, range) }
presupposition = { true }

157

pragmatics = { true }
trees = { aTheNP(X), aANP(X) }
}.

word = {
name = { position }

basic = { true }

decl = { alpha(X) }

site = { np(X) }

match = { (number singular; person third; gender neuter) }

semantics = { abstract0bj(X), type(X, position) }

presupposition = { true }

pragmatics = { true }

trees = { aTheNP(X), aANP(X) }

word = {
= { dial }

basic = { true }

decl = { alpha(X) }

site = { np(X) }

match = { (number singular; person third; gender neuter) }

semantics = { physicalObj(X), type(X, dial) }

presupposition = { true }

pragmatics = { true }

trees = { aTheNP(X), aANP(X) }

name

word = {
name = { gauge }

basic = { true }

decl = { alpha(X) }

site = { np(X) }

match = { (number singular; person third; gender neuter) }

semantics = { physicalObj(X), type(X, gauge) }

presupposition = { true }

pragmatics = { true }

trees = { aTheNP(X), aANP(X) }

word = {
name = { light }
basic = { true }
decl = { alpha(X) }
site = { np(X) }
match = { (number singular; person third; gender neuter) }
semantics = { physicalObj(X), type(X, light) }
presupposition = { true }
pragmatics = { true }
trees = { aTheNP(X), aANP(X) }

158

word = {
name = { cover }

basic = { true }

decl = { alpha(X) }

site = { np(X) }

match = { (number singular; person third; gender neuter) }

semantics = { physicalObj(X), type(X, cover) }

presupposition = { true }

pragmatics = { true }

trees = { aTheNP(X), aANP(X) }

word = {
name = { screw }
basic = { true }
decl = { alpha(X) }
site = { np(X) }
match = { (number singular; person third; gender neuter) }
semantics = { physicalObj(X), type(X, screw) }
presupposition = { true }
pragmatics = { true }
trees = { aTheNP(X), aANP(X) }

word = {
name = { lever }

basic = { true }

decl = { alpha(X) }

site = { np(X) }

match = { (number singular; person third; gender neuter) }

semantics = { physicalObj(X), type(X, lever) }

presupposition = { true }
pragmatics = { true }
trees = { aTheNP(X), aANP(X) }

word = {
= { button }

basic = { true }

decl = { alpha(X) }

site = { np(X) }

match = { (number singular; person third; gender neuter) }

semantics = { physicalObj(X), type(X, button) }

presupposition = { true }

pragmatics = { true }

trees = { aTheNP(X), aANP(X) }

name

%% Adjectives/labels

159

word = {
name = { normal }
basic = { true }
decl = { beta(0) }
site {n(0 }
match = { () }
semantics = { property(0, label, normal) }
presupposition = { true }
pragmatics = { true }
trees = { bAdjN(0) }

}.

word = {
name = { status }
basic = { true }
decl = { beta(0) }
site = { n(0)
match = { () }
semantics = { property(0, label, status) }
presupposition = { true }
pragmatics = { true }
trees = { bA4jN(0) }

}.

word = {
name = { RESET }
basic = { true }
decl = { beta(0) }
site = { n(0) 2}
match = { () }
semantics = { property(0, label, reset) }
presupposition = { true }
pragmatics = { true }
trees = { bA4jN(0) }

}.

word = {
name = { ON }
basic = { true }
decl = { beta(0) }
site = { n(0) 2}
match = { () }
semantics = { property(0, label, on) }
presupposition = { true }
pragmatics = { true }
trees = { bAdjN(0) }

}.

word = {

name = { loose }
basic = { true }

160

decl { alpha(R,0,P) }

site = { pred(R,0,P) }

match = { () }

semantics = { configuration(R, 0, state(loose)) }
presupposition = { true }

pragmatics = { true }
trees = { adj(R,0,P) }

}.

word = {
name = { green }
basic = { true }
decl = { alpha(R,0,P) }
site = { pred(R,0,P) }
match = { () }
semantics = { configuration(R, 0, color(green)) }
presupposition = { true }
pragmatics = { true }
trees = { adj(R,0,P) }

}.

%% Purpose/means clauses

% Fronted ¢‘to’’ purpose clause
word = {
name = { to }
basic = { true }
decl { beta(S,R,P,E,T,A) }
site = { s(S,R,P,A) }
match = { () }
semantics = { subactions(P,E), agent(E,A), during(E,T), starts(T,R) }
presupposition = { true }

pragmatics = { command, complex(P) }
trees = { compSfronted(S,R,P,E,T,A) }

}.

% Means ‘‘by’’ clause

word = {
name = { by }

basic = { true }

decl = { beta(S,R,P,E,T) }

site = { vp(S,R,P) }

match = { () }

semantics = { subactions(P,E), during(E,T), starts(T,R) }
presupposition = { true }

pragmatics = { true }

trees = { VPcomp(S,R,P,E,T) }

% Non-fronted ¢‘to’’ purpose clause
word = {

161

name = { to }

basic = { true }

decl = { beta(S,R,E,P,T) }

site = { vp(S,R,E) }

match = { () }

semantics = { purpose(E, generate(P)), during(P,T) }

presupposition = { true }
pragmatics = { true }
trees = { compVP(S,R,E,P,T) }

%% Until clause

word = {
name = { until }

basic = { true }

decl = { beta(S,R,E,P,T) }

site = { vp(S,R,E) }

match = { () }

semantics = { postcondition(E, P) }

presupposition = { result(E, T) }

pragmatics = { true }

trees = { VPcompS(S,R,E,P,T) }

%% Miscellaneous

% Empty subject for imperative

word = {
name = { e }

basic = { true }

decl = { alpha(X) }

site = { np(X) }

match = { (case nom) }

semantics = { hearer(X) }

presupposition = { true }

pragmatics = { command }

trees = { epsilonNP(X) }

% Conjunction of sequential actions
word = {
name = { and then }
basic = { true }
decl = { beta(S,R,E,N,T) }
site = { vp(S,R,E) }
match = { () }
semantics = { nextAction(E,N), during(N,T) }
presupposition = { true }
pragmatics = { true }
trees = { bVPconjoin(S,R,E,N,T) }

162

A.2 Trees

% Initial trees

entry = {
name = { ds1(S,R,E) }
pragmatics = { true }
tree = {
node = {
type = { ds(S,R,E) }
top = { (cat ds) }
bottom = { (cat ds) }
kids = {
subst = { type = { s(S,R,E,A) }
top = { (cat s) } }
anchor = { index = {1} } }
}
}
}.

entry = {
name = { ds2(S,R,E,R1,E1,R2,E2) }
pragmatics = { true }
tree = {
node = {
type = { ds(S,R,E) }
top = { (cat ds) }
bottom = { (cat ds) }
kids = {
subst = { type = { s(S,R1,E1,A) }
top = { (cat s) } }
{ index = {1} }
anchor = { index = {2} }
subst = { type = { s(S,R2,E2,4) }
top = { (cat s) } }
anchor = { index = {1} } }

anchor

}
}
}.

entry = {
name = { ds3(S,T,P,R,E) }
pragmatics = { true }
tree = {
node = {
type = { ds(S,R,E) }
top = { (cat ds) }
bottom = { (cat ds) }

163

kids = {
subst = { type = { s(S,T,P,A) }
top = { (cat) } }
anchor = { index = {1} } }

entry = {
name = { simpleS(S,R,E,A) }
pragmatics = { true }
tree = {
node = {
type = { s(S,R,E,A) }
top = { (cat s; tense present) }
bottom = { (cat s; tense present) }
kids = {
subst = { type = { u:np(A) }
top = { (cat np; number X; person Y; case nom) } }
node = {
type = { ip(S,R,E) }
top = { (cat ip; form main; tense present; number X; person Y) }

bottom = { (cat ip; form main; tense present; number X; person Y) }
kids = {
node = { type = { u:infl(S,R,E) }

top = { (form main; tense present; number X; person Y) }
bottom = {(form main; tense present; number X; person Y)}
kids = { anchor = { index = {1} } }
}
subst = { type = { vp(S,R,E) }
top = {(cat vp; tense present; form main;
number X; person Y)}}

}3133Y.

entry = {
name = { predS(S,R,configuration(0,P)) }
pragmatics = { true }
tree = {
node = {
type = { s(S,R,configuration(0,P)) }
top = { (cat s; tense present) }
bottom = { (cat s; tense present) }
kids = {
subst = { type = { u:np(0) }
top = { (cat np; number X; person Y; case nom) } }
node = {
type = { ip(S,R,P) }
top = { (cat ip; tense present; form main; number X; person Y) }
bottom = { (cat ip; tense present; form main; number X; person Y) }
kids = {
node = {type = { u:infl1(S,R,P) }

164

top = { (tense present; form main; number X; person Y) }
bottom = { (tense present; form main; number X; person Y) }
kids = { anchor = { index = {1}}}}
node = { type = { vp(S,R,P) }
top = { (cat vp; tense present; form main;
number X; person Y) }
bottom = { (cat vp; tense present; form main;

number X; person Y) }
kids =
node

-~

{ type = { v(be) }
top = { (cat v; tense present; form main) }
bottom = { (cat v; tense present; form main) }
kids = { words = { words = {be} } } }
subst = { type = {pred(R,0,P)}
top = { (cat pred) } } } }
PPy}t

entry = {
name = { transitiveVP(S,R,E,0) }
pragmatics = { true }
tree = {
node = {
type = { vp(S,R,E) }
top = { (cat vp; form M; tense T; number X; person Y) }

bottom = { (cat vp; form M; tense T; number X; person Y) }
kids = {
node = { type = { v(E) }

top = { (cat v; form M; tense T; number X; person Y) }
bottom = { (cat v; form M; tense T; number X; person Y) }
kids = { anchor = { index = {1} } } }
subst = { type = { u:np(0) }
top = { (cat np) } } } } } }.

entry = {
name = { p:aTheNP(I) }
pragmatics = { property(I, unique, true) }
tree = {
node = {
type = { u:np(I) }
top = { (cat np; number X; gender Y) 1}

bottom = {(cat np; number X; gender Y) }
kids = {
words = { words = {thel}}
node = {
type = { p:n(I) }
top = {(cat n; number X; gender Y) }
bottom = {(cat n; number X; gender Y) }
kids = { anchor = { index = {1}}}
}
}

11}

165

entry = {
name = { aANP(I) }
pragmatics = { true }
tree = {
node = {
type = { u:np(I) }
top = { (cat np; number X; gender Y) 1}

bottom = {(cat np; number X; gender Y) }
kids = {
words = { words = {a}}
node = {
type = { n(I) }
top = {(cat n; number X; gender Y) }
bottom = {(cat n; number X; gender Y) }
kids = { anchor = {index = {1}}}
}
}
3.
entry = {

name = { adj(R,0,P) }
pragmatics = { true }
tree = {
node = { type = { pred(R,0,P) }
top = { (cat pred) }
bottom { (cat pred) }

node = { type = { adj(P) }
top = { (cat adj) }?}
bottom = { (cat adj) }
kids = { anchor = { index = {1} } } } } } } }.

entry = {

name = { pp(R,0,P,I,L) }

pragmatics = { true }

tree = {

node = { type = { pred(R,0,P) }
top = { (cat pred) }
bottom = { (cat pred) }
kids = {
node = { type = { u:pp(P) }
top = { (cat pp) }

bottom = { (cat pp) }
kids = {
node = { type = { p(I) }

top = { (cat p) %}

bottom = { (cat p) }

kids = { anchor = { index = {1} } } }
subst = { type = { u:np(L) }

166

top={ (catnp) } } } } 3 } } }.

entry = {

name = { epsilonNP(A) }

pragmatics = { hearer(A) }

tree = {

node = { type = { np(A) }

top = { (cat np; case nom) }
bottom = { (cat np; case nom) }
kids = { anchor = { index = {1} } } } } }.

% Auxiliary trees

entry = {
name = { compVP(S,R,E,P,T) }
pragmatics = { true }
tree = {
node = { type = { vp(S,R,E) }
top = { (cat vp; tense X; form M) }

bottom = { (cat vp; tense X; form M) }
kids = {
foot = { type = { vp(S,R,E) }
top = { (cat vp; temnse X; form M) } }
node = { type = { cvp(S,T,P) }

top = { (cat cvp; temse X; form M) }

bottom = { (cat cvp; temse X; form M) }
kids = {
node = { type = { comp }

top = { (cat comp) }
bottom = { (cat comp) }
kids = { anchor = { index = {1} } } }
subst = { type = { vp(S,T,P) }
top = { (cat vp; tense X; form M) } } } } }

11}

entry = {
name = { compSfronted(S,R,P,E,T,A) }
pragmatics = { true }
tree = {
node = {
type = { s(S,R,P,A) }
top = { (cat s; tense X) }

bottom = { (cat s; tense X) }
kids = {
node = { type = { cs(S,R,P,A) }

top = { (cat cs; temnse X) }

bottom = { (cat cs; tense X) }
kids = {
node = { type = { comp }

top = { (cat comp) }
bottom = { (cat comp) }

167

kids { anchor = { index = {1} } } }
foot = { type = { u:s(S,R,P,A) }
top = { (cat s; tense X) } } } }

words = { words = { \, } }
subst = { type = { s(8,T,E,A) }
top = { (cat s; tense X) } } } } } }.
entry = {

name = { VPcomp(S,R,P,E,T) }
pragmatics = { true }
tree = {
node = { type = { vp(S,R,P) }
top = { (cat vp; form M; tense X; number Y; person Z) }

bottom = { (cat vp; form M; tense X; number Y; person Z) 1}
kids = {
foot = { type = { vp(S,R,P) }
top = { (cat vp; form M; tense X; number Y; person Z) } }
node = { type = { cvp(S,T,E) }

top = { (cat cvp) }

bottom = { (cat cvp) }
kids = {
node = { type = { comp }

top = { (cat comp) }
bottom = { (cat comp) }
kids = { anchor = { index = {1} } } }
subst = { type = { vp(S,T,E) }
top = { (cat vp; form gerund) } } }

}rr1 L

entry = {
name = { VPcompS(S,R,E,P,T) }
pragmatics = { true }
tree = {
node = { type = { vp(S,R,E) }
top = { (cat vp; temnse X) }

bottom = { (cat vp; tense X) }
kids = {
foot = { type = { vp(S,R,E) }
top = { (cat vp; temse X) } }
node = { type = { cs(S,T,P) }

top = { (cat cs; tense X) }

bottom = { (cat cs; tense X) }
kids = {
node = { type = { comp }

top = { (cat comp) }
bottom = { (cat comp) }
kids = { anchor = { index = {1} } } }
subst = { type = { s(S,T,P) }
top = { (cat s; tense X) } } } } } }
3.

168

entry = {

name = { bAdjN(0) }
pragmatics = { true }
tree = {
node = { type = { n(0) }
top = { (cat n) }
bottom = { (cat n) }
kids = {
node = { type = { u:adj }
top = { (cat adj) }
bottom = { (cat adj) }
kids = {
anchor = { index = {1} } } }
foot = { type = { n(0) }
top = { (catn) } + }+ 3} 1} }.
entry = {
name = { bVPpp(S,R,E,P,0) }
pragmatics = {true}
tree = {
node = {
type = { vp(S,R,E) }
top = { (cat vp; form M; tense T) }
bottom = { (cat vp; form M; temnse T) }
kids = {
foot = { type = { vp(S,R,E) }
top = { (cat vp; form M; tense T) } }
node = { type = { pp(P) }
top = { (cat pp) }
bottom = { (cat pp) 1}
kids = {
node = { type = { p }
top = { (cat p) }
bottom = { (cat p) }
kids = { anchor = { index = {1} } } }
subst = { type = { u:np(0) }
top = { (cat np; case obj) } } } }
333}
entry = {
name = { bVPadv(S,R,E) }
pragmatics = { true }
tree = {
node = { type = { vp(S,R,E) }

top = { (cat vp; form M; tense T) }

bottom = { (cat vp; form M; temnse T) }
kids = {
foot = { type = { vp(S,R,E) }
top = { (cat vp; form M; tense T) } }
node = { type = { adv }

169

entry = {

name =

pragmatics

tree =

top = { (cat adv) }
bottom = { (cat adv) }
kids = { anchor = { index = {1} } }

{ bVPconjoin(S,R,E,N,T) }

{

= { true

}

node = { type = { vp(S,R,E) }
top = { (cat vp; form M; tense X) 1}

bottom =
kids = {
foot =

anchor
anchor

{

{

(cat vp; form M; tense X) }

type = { vp(S,R,E) }

top = { (cat vp; form M; tense X) } }
{ index = {1} }

{ index = {2} }

subst = { type = { vp(S,T,N) }

top = { (cat vp; form M; tense X) } } } } } }.

A.3 Modal operators

dim local.

% G has information used to test specificities

G

S4.

% C is overall general common knowledge

C

U1
U2
U3

P1
P2
P3

54 G.

sS4 C.

S4 U1l.
5S4 U2.

S4 U1l.
S4 U2.
S4 U3.

S S4 P1 P2 P3.

A.4 Domain knowledge

% KNOWLEDGE FOR THE PANEL DOMAIN EXAMPLES

170

G true.

.

Knowledge about the general situation

C hearer(u).
C domain(u,u).

C command.
C *P *R (subinterval(R,P) -> C(present(P) -> present(R))).

*P xR C(starts(R,P) -> subinterval(R,P)).
*P xR1 *R2 C(meets(R2,R1), subinterval(R1,P) -> subinterval(R2,P)).

% Knowledge about objects

% Rules for reasoning about objects

*0 C (type(0, standardScrew) -> type(0, screw)).
*0 C (type(0, controlPanel) -> type(O0, panel)).
*0 C (type(0, standardScrewHole) -> type(0, hole)).
*0 C (type(0, controlLever) -> type(0, lever)).
*0 C (type(0, standardButton) -> type(0, button)).

*0 ((physicalObj(0) ; abstractObj(0)) -> object(0)).
% Object distractor rule
*01 *02 (object(01), object(02) -> C domain(01,02)).
% Object specifications

physicalObj (pumpl) .

type (pumpl, pump).

hasPart (pumpl, pressurel).

hasPart (pumpl, panell).

property(pumpl, state, oneOf (running, reset, halted)).
property(pumpl, controlSource, list(leverl, buttonl, physicalModel)).
property(pumpl, movable, true).

property(pumpl, unique, true).

O

abstractObj (pressurel) .

type(pressurel, pressure).

part0f (pressurel, pumpl).

property(pressurel, controlSource, list(diall, physicalModel)).
property(pressurel, unique, true).

QO

physicalObj(panell).
type(panell, controlPanel).
part0f (panell, pumpl).
hasPart(panell, coverl).

QaQaaQ

171

QO Qoo oNoNoNoNININONONONP] Qoo Qoo

QaQaaaaq

hasPart(panell, gaugel).
hasPart(panell, diall).
hasPart(panell, leverl).
hasPart(panell, lightl).
hasPart(panell, buttonl).
property(panell, movable, false).
property(panell, unique, true).

physicalObj(coverl).

type(coverl, cover).

part0f (coverl, panell).

hasPart(coverl, screwl).

hasPart(coverl, holel).

property(coverl, defaultLocation, on(panell)).
property(coverl, movable, true).
property(coverl, unique, true).

physicalObj(screwl).

type(screwl, standardScrew).

part0f (coverl).

property(screwl, state, one(f(tight,loose)).
property(screwl, loosenDir, ccw).
property(screwl, tightenDir, cw).
property(screwl, defaultLocation, in(holel)).
property(screwl, turnable, true).
property(screwl, movable, true).
property(screwl, unique, true).

physicalObj(holel).

type(holel, standardScrewHole).

part0f (holel, coverl).

property(holel, location, in(coverl)).
property(holel, movable, false).
property(holel, unique, true).

physicalObj(gaugel) .

type(gaugel, gauge).

part0f (gaugel, panell).

hasPart (gaugel, rangel).

hasPart(gaugel, range2).

property(gaugel, controlSource, pressurel).

property(gaugel, state, oneOf (within(rangel),outside(rangel))).
property(gaugel, movable, false).

property(gaugel, unique, true).

abstractObj (rangel) .
type(rangel, range).

part0f (rangel, gaugel).
property(rangel, label, normal).
property(rangel, unique, true).

172

QaQaaQ

oNoNoNoNoNO NN NGO NGO NGO Qoo

QO Qoo

QO

QaQaaQ

abstractObj (range2) .
type(range2, range).

part0f (range2, gaugel).
property(range2, unique, true).

physicalObj(diall).

type(diall, dial).

part0f (diall, panell).
property(diall, turnDir, cw).
property(diall, controls, pressurel).
property(diall, turnable, true).
property(diall, unique, true).

physicalObj(leverl).
type(leverl, controllever).
part0f (leverl, panell).
hasPart(leverl, resetPosl).
hasPart(leverl, defaultPos1).
hasPart(leverl, leverSlotl).
property(leverl, weight, fixed).
property(leverl, defaultLocation, at(defaultPos1)).
property(leverl, returns2defaultlLocation, true).
property(leverl, controls, pumpl).
property(leverl, movable, true).
property(leverl, unique, true).

abstract0Obj(resetPosl).

type(resetPosl, position).

part0f (resetPosl, leverl).

property(resetPosl, label, reset).
property(resetPosl, location, above(defaultPosl)).
property(resetPosl, movable, false).
property(resetPosl, unique, true).

abstractObj(defaultPosl).
type(defaultPosl, position).
part0f (defaultPosl, leverl).

property(defaultPosl, location, bottom(leverSlotl)).

property(defaultPosl, movable, false).
property(defaultPosl, unique, true).

physicalObj(leverSlotl).
type(leverSlotl, slot).

part0f (leverSlotl, leverl).
property(leverSlotl, movable, false).
property(leverSlotl, unique, true).

physicalObj(light1).
type(lightl, light).

part0f (lightl, panell).
property(lightl, label, status).

173

property(lightl, color, one(f(red, green)).
property(lightl, controlSource, pumpl).
property(lightl, movable, false).
property(lightl, unique, true).

QaQaaQ

physicalObj(buttonl).

type(buttonl, standardButton).

part0f (buttonl, panell).

property(buttonl, controls, pumpl).
property(buttonl, resistance, fixed).
property(buttonl, inDir, prependicularTo(panell)).
property(buttonl, label, on).

property(buttonl, movable, true).
property(buttonl, unique, true).

oNoNoNoNoNONONONS!

Q

physicalObj(genericButton).
C type(genericButton, standardButton).

% Initial state of objects
C configuration(t_1, panell, state(closed)).
C configuration(t_1, coverl, location(on(panell))).

C configuration(t_1, screwl, location(in(holel))).

*T %0 *P xS C((starts(S, T); meets(S,T)), configuration(T, 0, P) ->
C configuration(S, 0, P)).

% Knowledge about locatioms

*P *Q (location(P), location(Q) -> C domain(P, Q)).

*0 C location(at(D)).

*0 C locObj(at(0),0).

*0 C locObj(location(at(0)),0).
*0 C location(on(D)).

*0 C locObj(on(0),0).

*0 C locObj(location(on(0)),0).
*0 C location(awayFrom(0)).

*0 C locObj(awayFrom(0),0).

*0 C locObj(location(awayFrom(0)),0).
*0 C location(in(D)).

*0 C locObj(in(0),0).

*0 C locObj(location(in(0)),0).
*0 C location(over(0)).

*0 C locObj(over(0),0).

*0 C locObj(location(over(0)),0).

% Knowledge about action termination

% "If a postcondition is part of the action information, then the
% action has termination information."

174

*E *P C(postcondition(E,P) -> termination(E)).
% "If an action has a bounded path, then the action has termination."
*E *0 *T *P C(motion(E,0,T), pathEnd(E, P) -> termination(E)).

% "If an action has a purpose and the purpose has a termination, then
% the action has termination."

*A *P C(purpose(A,generate(P)) -> termination(A)).
% Knowledge about actions in the domain

% General knowledge about actions and what it means for actions to be
% "concrete"

*A xR *0 *P C(postcondition(A,configuration(0,P)), result(A,R) ->
configuration(R,0,P)).

*A C(pathDir(A,D) -> path(A)).
*A C(pathEnd(A,D) -> path(A)).

*A *0 *T C(motion(A,0,T), path(A) -> concrete(A)).

*A 0 *W *D C(force(A,0), magnitude(A,W), pathDir(A,D) -> concrete(A)).
*A %0 *T *P U2(motion(A,0,T), purpose(A,P) -> concrete(A)).

*A *0 *T *P U2(force(A,0), purpose(A,P) -> concrete(A)).

*P C(purpose(P), (7A purpose(A,generate(P))) -> concrete(P)).

*A C((?S subactions(A, S), concreteAll(S)) -> concrete(A)).

C concreteAll(nil).
*A C((?N nextAction(A, N), concrete(A), concreteAll(N)) -> concreteAll(A)).

*S *A Ul(type(S,screw),
postcondition(A,configuration(S,state(loose))) ->
motion(A,S,rotational),
(7D property(S, loosenDir, D), pathDir(A,D))).

% Knowledge for opening the panel

*A (postcondition(A, configuration(panell, state(open))) ->
U3 7?S(subactions(A,S), nextAction(S,nil),
postcondition(S, configuration(screwl,location(awayFrom(hole1)))))).

*A (postcondition(A,configuration(screwl,location(awayFrom(holel))))

-> U2 7S7?N (subactions(A,S),
postcondition(S,configuration(screwl,state(loose))),
nextAction(S,N), motion(N,screwl,translational),
pathEnd (N,awayFrom(holel)), nextAction(N,nil))).

*A *0 (postcondition(A,configuration(0,state(open))) ->

175

P1 complex(A)).

*A *x0 (type(0,screw), motion(A,0,rotational) ->
Ul instrument(A, screwdriver)).

% Knowledge for normalizing the pressure

*A (postcondition(A,configuration(pressurel,state(normal))) ->
U3 7S(subactions(A,S), nextAction(S,nil),
postcondition(S, configuration(gaugel,state(within(rangel)))))).

*A (postcondition(A,configuration(pressurel,state(normal))) ->
P2 purpose(A)).

*A (postcondition(A,configuration(gaugel,state(within(rangel)))) ->
U2(motion(A, diall, rotatiomnal),
?D(property(gaugel,turnDir,D), pathDir(A,D)))).

*A (postcondition(A,configuration(pressurel,state(normal))) ->
P1 complex(A)).

% Knowledge for starting the pump

*A (postcondition(A, configuration(pumpl, state(running))) ->
U3 7S7N(subactions(A,S),
postcondition(S,configuration(pumpl,state(reset))),
nextAction(S,N), nextAction(N,nil),
force(N,buttonl), magnitude(N,greater(resistance(button1))),
pathDir (N, inDir(buttonl)))).

*A (postcondition(A, configuration(pumpl, state(running))) ->
P2 complex(A)).

*A (postcondition(A, configuration(pumpl, state(reset))) ->
U2 7S7?N(subactions(A,S),
motion(S,leverl,translational), pathEnd(S,at(resetPosl)),
nextAction(S,N), force(N,leverl), pathEnd(N,at(resetPosl)),
pathDir(N, oppositeDir(gravity)), magnitude(N,weight (leverl)),
postcondition(N,configuration(lightl,color(green))))).

*A (postcondition(A, configuration(pumpl, state(running))) ->
P1 elaborate(A)).

% Action: a

C domain(a,a).
during(a, t).
result(a, r).

meets(r, t).
agent(a, u).

nn QW

176

mn mn n n

mMnumn nnm Q 0n wn

QaQaq ==

M nnmnnn Q N [92]

=

QaQaaQ

0 aQwnnwn

postcondition(a, configuration(statusl, pump(running))).

subactions(a, al).
nextAction(a, nil).
parent(a, nil).

Action: al
domain(al,al).
step(al).

during(al, t_1).

starts(t_1, t).

result(al, t_2).

meets(t_2, t_1).

agent(al, u).

postcondition(al, configuration(panell, state(open))).
subactions(al, oal).

nextAction(al, a2).

parent(al, a).

Action: oal

domain(oal,oal).
domain(t_1_1,t_1_1).
domain(t_1_2,t_1_2).
time(t_1_1).

substep(oal,al).

during(oal, t_1_1).
starts(t_1_1, t_1).
result(oal, t_1_2).
meets(t_1_2, t_1_1).
agent (oal, u).

postcondition(oal, configuration(screwl, location(awayFrom(holel)))).

subactions(oal, ual).
nextAction(oal, oa2).
parent(oal, al).

Action: ual

domain(ual,ual).
domain(t_1_1_1,t_1_1_1).
domain(t_1_1_2,t_1_1_2).
time(t_1_1_1).
during(ual, t_1_1_1).
starts(t_1_1_1, t_1_1).
result(ual, t_1_1_2).
meets(t_1_1_2, t_1_1_1).

177

mMnwmnw nnn n 1

==

nmMunnmmw nn Q0N n Q

==

Q

M nmnwnmn Qun n

mnwmn n Qwn

agent (ual, u).

instrument (ual, screwdriver).

motion(ual, screwl, rotational).

pathDir (ual, ccw).

postcondition(ual, configuration(screwl, state(loose))).
nextAction(ual, ua2).

prevAction(ual,nil).

parent (ual, oal).

Action: ua2
domain(ua2,ua?2).

during(ua2, t_1_1_2).
finishes(t_1_1_2, t_1_1).
result(ua2, t_1_2).

agent (ua2, u).

motion(ua2, screwl, translatiomnal).
pathEnd (ua2, awayFrom(holel)).
nextAction(ua2, nil).
prevAction(ua2, ual).

parent (ua2, oal).
Action: oa2
domain(oa2,0a2).
precondition(oa2, oal).

during(oa2, t_1_2).

finishes(t_1_2, t_1).

result(oa2, t_2).

agent (oa2, u).

postcondition(oa2, configuration(coverl, location(awayFrom(panell)))).
nextAction(oa2, nil).

prevAction(oa2, oal).

parent(oa2, al).

Action: a2

domain(a2,a2).
domain(t_3,t_3).

step(a2).

during(a2, t_2).

result(a2, t_3).

meets(t_3, t_2).

agent (a2, u).

postcondition(a2, configuration(pressurel, state(normal))).
subactions(a2, nal).

178

[92]

h

M nunmmnh nom vt tnn

M nnmnn nnnn Q

mMnwmn n QL

nextAction(a2, a3).
prevAction(a2, al).
parent (a2, a).

Action: nal
domain(nal,nal).
substep(nal,a2).

during(nal, t_2_1).
starts(t_2_1, t_2).
finishes(t_2_1, t_2).
result(nal, t_3).

agent(nal, u).

motion(nal, diall, rotational).
pathDir(nal, cw).
postcondition(nal, configuration(gaugel, state(within(rangel)))).
purpose(nal, generate(a2)).
nextAction(nal, nil).
parent(nal, a2).

Action: a3
domain(a3,a3).
step(a3).

during(a3, t_3).

result(a3, t_4).

meets(t_4, t_3).

agent (a3, u).

postcondition(a3, configuration(pumpl, state(running))).
subactions (a3, sal).

nextAction(a3, nil).

prevAction(a3, a2).

parent (a3, a).

Action: sal
domain(sal,sal).
substep(sal,a3).

during(sal, t_3_1).

starts(t_3_1, t_3).

result(sal, t_3_2).

meets(t_3_2, t_3_1).

agent(sal, u).

postcondition(sal, configuration(pumpl, state(reset))).
subactions(sal, ral).

179

h

Q == nmMnnmmnun nn Q N n

mMnunmnmmnh nunmm QW

==

Q

M nunmnmnhnoununmOQunuwn

nextAction(sal, sa2).
parent (sal, a3).

Action: rail
domain(ral,ral).

during(ral, t_3_1_1).
starts(t_3_1_1, t_3_1).

result(ral, t_3_1_2).
meets(t_3_1_2, t_3_1_1).

agent(ral, u).

motion(ral, leverl, translational).
pathEnd(ral, at(resetPosl)).
nextAction(ral, ra?2).

parent(ral, sal).
Action: ra2
domain(ra2,ra?2).

during(ra2, t_3_1_2).

result(ra2, t_3_2).
finishes(t_3_1_2, t_3_1).
agent(ra2, u).

force(ra2, leveril).

magnitude(ra2, weight(leverl)).
pathDir(ra2, oppositeDir(gravity)).

postcondition(ra2, configuration(lightl, color(green))).

nextAction(ra2, nil).
prevAction(ra2, ral).
parent(ra2, sal).

Action: sa2
domain(sa2,sa?2).

during(sa2, t_3_2).
finishes(t_3_2, t_3).
result(sa2, t_4).
agent(sa2, u).
force(sa2, buttonl).
magnitude(sa2, greater(resistance(buttonl))).
pathDir(sa2, inDir(buttonl)).
purpose(sa2, generate(a3)).
nextAction(sa2, nil).
prevAction(sa2, sal).
parent(sa2, a3).

180

A.5 Morphological knowledge

present = begin
(form main; mode interrogative; number singular; person third) ~> does ;
(form main; mode interrogative) “> do ;
O ™ ;

end.

you = begin () "> you ; end.
e = begin (cat np; case nom) "> ; end.

the = begin () "> ; end.
a = begin () "> a ; end.

from = begin () "> from ; end.

to = begin () "> to ; end.
by = begin () "> by ; end.
in = begin () > in ; end.

within = begin () "> within ; end.

on = begin () "> on ; end.

onto = begin () "> onto ; end.

outof = begin () "> out of ; end.
awayfrom = begin () "> away from ; end.

counterclockwise = begin () ~> counterclockwise ; end.
clockwise = begin () "> clockwise ; end.

until = begin () “> until ; end.
and = begin () "> and ; end.
then = begin () > then ; end.
Then = begin () > Then ; end.

? = begin () "> 7 ; end.
, = begin () > , ; end.
; = begin (O "> ; ; end.

= begin () "> ; end.

\. = begin (O "> \. ; end.

pump = begin (cat n) “> pump ; end.

panel = begin (cat n) ~> panel ; end.

cover = begin (cat n) ~> cover ; end.

dial = begin (cat n) “> dial ; end.

lever = begin (cat n) "> lever ; end.

gauge = begin (cat n) > gauge ; end.
pressure = begin (cat n) ~> pressure ; end.
position = begin (cat n) ~> position ; end.
light = begin (cat n) ~> light ; end.

hole = begin (cat n) "> hole ; end.

screw = begin (cat n) °> screw ; end.
screwdriver = begin (cat n) “> screwdriver ; end.
button = begin (cat n) ~> button ; end.

181

range = begin (cat n) > range ; end.

red = begin (cat adj) "> red ; end.
green = begin (cat adj) ~> green ; end.
loose = begin (cat adj) “> loose ; end.
tight = begin (cat adj) ™> tight ; end.
normal = begin (cat adj) “> normal ; end.
RESET = begin (cat adj) ~> RESET ; end.
ON = begin (cat adj) "> ON ; end.

move = begin
(cat v; tense present; form main) ~> move ;
(cat v; form gerund) > moving ;

end.

remove = begin
(cat v; form main; tense present) ~> remove ;
(cat v; form gerund) > removing ;

end.

turn = begin
(cat v; tense present; form main) ~> turn ;
(cat v; form gerund) “> turning ;

end.

open = begin
(cat v; tense present; form main) ~> open ;
(cat v; form gerund) ”> opening ;

end.

normalize = begin
(cat v; tense present; form main) ~> normalize ;
(cat v; form gerund) > normalizing ;

end.

hold = begin
(cat v; tense present; form main) ~> hold ;
(cat v; form gerund) > holding ;

end.

press = begin
(cat v; tense present; form main) > press ;
(cat v; form gerund) > pressing ;

end.

start = begin
(cat v; tense present; form main) "> start ;
(cat v; form gerund) > starting ;

end.

reset = begin

182

(cat v; tense present; form main) ~> reset ;
(cat v; form gerund) > resetting ;

end.

be = begin
(cat v; tense present; form main) ~> is ;
(cat v; form gerund) “> being ;

end.

A.6 Generation instances

gen = {

name = { Step 1 for Novice }

private = { S § }

shared = { P1 (P1 present(t_1) -> §) }

describe = { ds(s,t_1,al) }

pattern = { ds(S,R,E) }

features = { () }

communicate = { concrete(al) termination(al)
concrete(oal) termination(oal)
concrete(ual) termination(ual) nextAction(oal,oa2)
concrete(oa2) termination(oa2) }

}.
gen = {
name = { Step 1 for Beginner }
private = { S $ }
shared = { P2 (P2 present(t_1) -> $) }
describe = { ds(s,t_1,al) }
pattern = { ds(S,R,E) }
features = { () }
communicate = { concrete(al) termination(al) }
}.
gen = {
name = { Step 1 for Advanced }
private = { S § }
shared = { P3 (P3 present(t_1) -> $) }
describe = { ds(s,t_1,al) }
pattern = { ds(S,R,E) }
features = { () }
communicate = { concrete(al) termination(al) }
}.
gen = {

name = { Step 2 for Novice }

private = { S § }

shared = { P1 (P1 present(t_2) -> §) }
describe = { ds(s,t_2,a2) }

183

pattern = { ds(S,R,E) }

features = { () }

communicate = { concrete(a2) termination(a2)
concrete(nal) termination(nal) }

gen = {
name = { Step 2 for Beginner }
private = { S $ }
shared = { P2 (P2 present(t_2) -> $) }
describe = { ds(s,t_2,a2) }
pattern = { ds(S,R,E) }
features = { () }
communicate = { concrete(a2) termination(a2) }

}.
gen = {
name = { Step 2 for Advanced }
private = { S $ }
shared = { P3 (P3 present(t_2) -> $) }
describe = { ds(s,t_2,a2) }
pattern = { ds(S,R,E) }
features = { () }
communicate = { concrete(a2) termination(a2) }
}.
gen = {
name = { Step 3 for Novice }
private = { S $ }
shared = { P1 (P1 present(t_3) -> $) }
describe = { ds(s,t_3,a3) }
pattern = { ds(S,R,E) }
features = { () }
communicate = { subactions(sal,ral) nextAction(sal,sa2)
concrete(ral) termination(ral) nextAction(ral,ra2)
concrete(ra2) termination(ra2)
purpose(sa2,generate(a3)) }
}.
gen = {
name = { Step 3 for Beginner }
private = { S $ }
shared = { P2 (P2 present(t_3) -> §) }
describe = { ds(s,t_3,a3) }
pattern = { ds(S,R,E) }
features = { () }
communicate = { concrete(a3) termination(a3)
concrete(sal) termination(sal) nextAction(sal,sa2) }
}.
gen = {

184

name = { Step 3 for Advanced }

private = { S § }

shared = { P3 (P3 present(t_3) -> $) }
describe = { ds(s,t_3,a3) }

pattern = { ds(S,R,E) }

features = { () }

communicate = { concrete(a3) termination(a3) }

185

Appendix B

Excerpts from coded corpus

These appendix presents randomly selected excerpts from the three sources of coded corpus

data.

B.1 [Reader’s Digest, 1991]

Excerpts from ”Reader’s Digest New Complete Do-It-Yourself Manual”.
Published by The Reader’s Digest Association, Pleasantville, NY, 1991.

Scanned by Joseph Rosenzweig, March 1994.

Chapter One: Emergency repairs in your home

Draining the system

1.
2.

Turn off the main water supply valve. ACJp]

Stop the water supply to the water heater by closing valve on pipe leading into heater.
IC[pc-by:IC]

If you have a gas heater, turn off the gas cock. AC|p]
If you have an electric water heater, switch off its circuit breaker or remove the fuse
that controls heater’s circuit. ICp], IC
If your heating system utilizes a boiler, shut off water supply line the water inlet valve
to the boiler (the valve should be near the boiler on pipe leading into it). IC|p]
Then flush all the toilets in the house and open all faucets. IC, IC
If house is heated by a hot-water system, open the valves on all radiators (if they have
individual valves). IC
Then open the air vents on one or more radiators (baseboard or other type) on highest
floor of house. IC
Hold cup under vent and catch water as it spurts out. ATJoa], IC

Let the water in the boiler cool (check the temperature indicator on the unit).
AC]Jarg], IC

Attach a hose to the drain valve near the base of the boiler and lead it outdoors or to
a drain lower than the boiler. IC, ACJ[adv,pp]

Open the outlet and let the water flow out. IC, ACJarg]

186

6. Attach a hose to the draincock of the water heater and direct the hose into a drain,
to a place lower than the heater’s draincock or outdoors and away from the house. IC,

AC|pp,adv]
Open the drain valve and let the water run out. IC, ACJarg]
7. Open draincock on main water supply line. I1C
If no such spigot exists, disconnect a fitting at lowest point in system to allow rest
of water to run out. IC[pc-to:ACJarg]]
If your water comes from a well, switch pump circuit off; drain above-ground pump
lines and the storage tank. ICJ[p], IC
8. Empty toilet bowls and tanks by siphoning or bailing and sponging. IC[pc-
by:AC|oal]
Pour propylene glycol antifreeze (from plumbing supplier or RV or marine dealer) into
toilet bowls, sinks, tubs, dishwasher, and washing machine. AC]Jarg,pp]
When power returns, put both washers through cycle. IC,

Chapter Two: Hand tools and how to use them

Hand tools:Constructing a workbench 1. Measure and cut legs. IC, ACJarg]
Subtract thickness of plywood layers (step 6) from final height {0 determine length
of long leg pieces. IC[pc-to:IC|
Cut other pieces 3 1/2 in. shorter than long pieces. AC]Jarg]
Glue and nail one long and one short piece to form a unit. ACJoa], AC[pc-to:IC]
Install nails in zigzag pattern. IC

2. Cut two cross braces 20 in. long. ACJarg]
Set them in place across short leg pieces. I1C
Drill 1/4-in.-diameter holes through braces and legs, two holes per leg. Do not fasten.
ACIpp]

Label braces and legs for reassembly, and set the braces aside. IC, IC

3. Cut two top rails 45 in. long and two bottom rails 48 in. long. AC]Jarg]
Align top rails with long leg pieces; bottom rails 8 in. from floor. IC
Be sure labeled legs match and rails are inside them. IC
Drill two 3/16-in. holes through each connection. AC|pp]
Fasten with lag screws and flat washers. IC

4. Assemble base. IC
Put cross braces in place on legs. IC
Fasten with carriage bolts, flat washers, lock washers, and nuts. I1C
Cut shelf,13 x 48 in.,from end of plywood panel. AC]Jarg]
Put shelf in place on lower rails, and secure it with 8d nails or 1 1/4-in. wood screws.
IC, IC

5. Cut remaining plywood panel in half lengthwise; then trim panels to length. AC|[pp],
ACIpp]

If mounting a wood working vise, allow a 15-in. overhang at vise end,4 in. at other
end, and 2 in. at sides. AC]arg]
Attach one panel to base with 4d ringed nails or countersunk screws. I1C

187

6.

Glue panels together with white or yellow glue. AClJadv]
Clamp around perimeter, and weight the center to ensure proper bonding. IC[pp],
AC|pc-to:IC]

For extra strength, install countersunk ringed nails or screws around perimeter at 1-ft

intervals. I1C
Cut notch for vise. AC]Jarg,for]
Cut 1 x 2’s for edging. AClfor]
Tack them around top rim, flush with bench top, with small ringed nails. AC|pp]
Butt join (p.100) or miter (p.108) corners. IC, IC
Fit vise to workbench, following manufacturer’s instructions. IC
Cut hardboard to same size as edged bench top. AC|pp]
Apply glue to hardboard and to bench. AC|pp]

Align all edges; then apply clamps and weights to maintain position until glue dries.
IC, AT[pc-to:AT[until]]
Finish with at least three coats of polyurethane varnish (p.121). IC

Chapter Three: Power tools and how to use them

Basic drilling

1.

Adjustments

Insert a bit fully into the chuck. IC[adv]
Unless your drill has a power-driven automatic chuck lock, turn the chuck key in all
three holes so that all the jaws make contact with the bit. AC|pc-st]

Make sure that the piece you are working on is firmly supported or clamped down.
IC

If possible, arrange the work so that you are drilling straight down or straight ahead.
IC[ms]
Make a starter hole with an awl or nail so that the drill bit won’t wander. IC[ms]

Place the bit in the starter hole and begin drilling at slow speed (if your drill is

equipped with variable speed). IC, IC
Increase speed after the bit has penetrated the surface. AC]Joa]
Push firmly, but don’t force the drill to cut too fast. AT]oa]
To help you keep the drill straight, position or clamp a try square or combination
square near the drill and keep the drill parallel to the square. IC[pc-to:AC[oa]],
ACJoa], ACJoa]

When drilling all the way through a piece of wood, clamp a piece of scrap wood behind
it to prevent it from splintering. IC[pc-to:IC]
Or drill into the wood only until the point of the bit emerges, then complete the
drilling from the other side. AC]|pp,until], IC
To make a hole of the depth you want, use a commercial drill stop or gauge, or wrap
a piece of masking tape at the appropriate height on the bit. AC|pc-to:IC],
IC[pc-to:IC]

Then drill until the stop, gauge, or tape touches the surface of the material being
drilled. AT[until]

188

7. Put 1/2-in. bit into chuck. IC
Place square in front of bit, then at side, to check that it is perpendicular to drill

press table. IC[pc-to:IC]
Adjust, if needed. AClJoa]
8. Rotate same bit close to block of wood. ATYif)
If you see a wobble in gap between bit and wood, rechuck bit and test again. IC, IC
Replace chuck if wobble persists. 1C
9. Check angle of table. IC
Adjust temporarily by inserting paper or foil shims, as shown. AC]|pc-by:IC]
Shim here to tilt downward. IC[pc-to:ACJ[oa]]

Chapter Four: Fasteners and adhesives

Joining with wood screws

1. Clamp the pieces together. IC[adv]
Mark the screw positions and select a drill bit equal to the diameter of the screw’s
shank (see chart, facing page). IC, IC
Mark the top piece’s thickness on the bit with tape (or use a drill stop). IC
Then drill a shank hole, stopping at tape. ACIfa:IC]

2. Select a drill bit equal to the screw’s diameter minus the threads. I1C
With a piece of tape, mark the screw’s length on the bit. I1C
Drill pilot hole, stopping at the tape. ACIfa:1C]

3. If you are using flathead screws, drill a countersink hole of the same diameter as the
screwhead. AC]Jarg]
Check diameter by holding screwhead upside down over hole. IC[pc-by:AT][oa]]

4. Rub wax on screw threads for easier installation. ACJp]

Insert screw in the hole and drive it in until screwhead is flush with surface of work.
IC, AC|p,until]

Chapter Five: Woodworking, types of wood, techniques and finishes
Overlapping joints

1. A table saw makes quick work of cutting end laps. Adjust saw blade height so that

the teeth just touch the scribed cheek line. AC|pc-st]
Using a miter gauge to guide work across saw table, make shoulder cut. IC[fa:AT[pc-
to: AC[pp]]]

2. Cut joint face with a tenoning jig. AC]Jarg]
Clamp work vertically in jig and remove waste in a single cut. IC, IC
If you don’t have a jig, hold stock as for shoulder cut and remove waste in several
passes. AT]oa], IC

3. A router with a straight bit can cut several lap joints at the same time. Mark and
align the pieces. I1C, IC
Clamp a guide board across them, allowing for distance between bit and edge of base
plate, so that bit is set for shoulder cut. IC[fa:AT]oa],ms]

189

4. Rout the waste, beginning at the tips of the pieces and cutting progressively closer
to guide board. IC[fa:IC, fa:ACJarg]]

If you are not experienced with a router, reposition the board to guide each cut.
IC[pc-to:AC[arg]]

Chapter Six: Metals and plastics, how to work with them
Starter holes

1. Clamp work securely in a vise, and drill a hole slightly smaller than the diameter of

the tap. IC, ACJarg]
(Check table at left for size the hole should be.) IC
Lubricate threads of tap with cutting fluid or (better still) swab them with semi-solid
vegetable shortening. IC, AC]Jarg|
Insert the lubricated tap in hole, aligning it carefully. IC[fa:IC]
Check the tap against a square to make sure it is straight. IC[pc-to:1C]
2. Use a tap wrench to turn tap clockwise. AT[pc-to:AC[oa]]
For first few turns, exert moderate downward pressure. AT|[for]
After each turn or so, back tap out a bit. AC|p,adv]

File burrs from edge of hole, brush away filings, and add more lubricant to the tap
to keep it from breaking off in the hole. AC|pp|, ACJadv], ACJarg,pc-to:IC]

3. Continue the process of turning the tap, backing it out, brushing metal chips out of
the threads, and adding lubricant. AT]oa]

If you are threading a blind hole, as you near the bottom, remove tap completely after
each turn or two, and use a piece of wire or a cotton swab to clean out metal chips.

ICladv], AT[pc-to:IC]

Chapter Seven: Concrete and asphalt
Mixing by hand

1. Using a square ended shovel, spread the premeasured sand evenly on the mixing area,
add the required amount of cement, and mix until you get a mass of uniform color
without brown or gray streaks. AC]Jarg,pp], ACJarg], ACJ[until]
Add coarse aggregate and turn the materials over at least three times or until all the
aggregate is evenly distributed. AC]Jarg], AC|p,iter,until]

2. Form a shallow depression in the middle of the sand-cement aggregate mixture; then
slowly pour in some of the measured water and work it in well, making sure to reach
all the way to the bottom of the mound. IC, AC|p,arg], AC[p,adv,fa:IC]

3. Pour more water into the depression, pull dry ingredients from the sides of the ring
into the water, and mix well. AC]Jarg], ACJarg], ACladv]

Continue adding water, a little at a time, and mixing the materials until they are
thoroughly combined and evenly moist. AT[until]

When all the water has been absorbed, turn the batch three or four times to ensure
a uniform mix. ACliter,pc-to:IC]

Chapter Eight: Masonry, building with brick, block, and stone

Mixing and handling mortar

190

1. Cut a slice of mortar from the mound on the mortarboard, using a sawing motion of
the trowel. ACJarg]
With the back of the trowel blade, shape the mortar into a ”sausage” about the length
and width of the blade. IC

2. Load the trowel by sweeping it under the mortar slice from behind with a smooth
forward motion. IC[pc-by:AC|pp]]
As you lift the trowel, snap your wrist down slightly to bond the mortar to the trowel
blade. IC[as:AC[arg],adv,pc-to:IC]

3. To throw a mortar line, set trowel tip, face up, where line is to begin. IClpc-to:IC]
As you pull trowel toward you, turn blade 180 degrees. AC]Jas:ACJpp],arg]

4. Furrow the mortar gently by running trowel tip, face down, along center of line.
IC[pe-by:ACpp]]

5. To butter a brick before laying it, hold it upright and tilted at a slight angle. AT [pc-

t0:IC,0a]

Pick up a small amount of mortar on the trowel and swipe it onto the end of the brick.

IC[p], ACIpp]

Squash mortar down against all four edges. AC|pp]
6. Shove brick in place, its buttered end pressed against adjoining brick. AC|pp]

Continue pressing until head and bed joints are the right thickness. AT[until]

Trim excess mortar with trowel edge; use excess to butter next brick. AC]Jarg],

AT[pc-to:1C]

Chapter Ten: Plumbing repairs and installations

Unclogging sink drains

1. Remove stopper or strainer, and block the overflow opening with wet cloth to create

a vacuur. IC, IC[pc-to:IC]
Position plunger over drain, and cover cup with water. IC, IC
Tilt cup to release trapped air. AC|pc-to:1C]
Plunge forcefully up and down 10 times; remove the plunger abruptly. IClJiter], IC
Repeat several times. AT/ iter]
2. If drain is still plugged, place a bucket under trap, unscrew clean-out plug, and let
the water drain out. IC, IC, AC]Jarg]
(If trap has no clean-out plug, remove the entire trap, as in step 4.) IC
Probe inside trap and pipe with bent wire to free clog. AT[pc-to:1C]
Screw plug back in (or reconnect trap). ACJp], IC

3. If the problem persists, feed auger through drain hole, cranking the tool’s handle
clockwise, until it hits clog an area of mushy resistance. AT|fa:AT]oa],until]

Work auger back and forth to break up the clog, then flush drain with hot water.
AT[pc-to:IC[p]], IC
4. If drain is still clogged, place a bucket beneath trap to catch water. IC[pc-to:1C]

Holding trap in place, use a wrench with taped jaws to unscrew slip nuts.

ATIfa:AT[oa],pc-t0:IC]

Remove trap, drain it, and clean it; replace washers if worn. IC, IC, IC, IC
Feed auger into pipe in wall and break up blockage. AT[pp,0a], IC[p]
Reassemble trap. I1C

191

B.2 [USAF, 1988]

ORGANIZATIONAL MAINTENANCE JOB GUIDE
FUEL SYSTEM DISTRIBUTION
USAF SERIES F-16C/D AIRCRAFT

10 OCTOBER 1988 CHANGE 5 6 SEPTEMBER 1991

CONNECTION OF HYDRAULIC TEST STAND

1. Open access door 3202. I1C

2. Depress system A reservoir dump valve until accumulator gage indicates precharge

pressure (table 2). AT[until]

3. Open access door 3216. IC

4. Connect hydraulic test stand pressure and return couplings to system A ground test

manifold. IC

5. Position FFP control valve handle in down (closed) position. IC

6. Open access door 3101. IC

7. Depress system B reservoir dump valve wuntil accumulator gage indicates precharge

pressure (table 2). AT[until]

8. Open access door 3115. IC

9. Connect hydraulic test stand pressure and return couplings to system B ground test

manifold. I1C

10. Connect cooling air. IC
11. Connect electrical power (paragraph 9). IC

REMOVAL OF CROSSFEED VALVE

1. (A) Remove access panel 3428. (General Maintenance) IC
2. (A) Purge A1 fuel tank (T.0. 1-1-3). IC
3. (A) Disconnect valve fuel tube from valve. IC
4. (A) Remove two couplings and slide two sleeves on engine supply and lower fuel

tubes. IC, AC[pp]
5. (A) Note position of any washers; then remove two bolts, aft clamp, and washers (as

required) from valve support bracket. IC, IC
6. (A) Loosen two bolts on forward clamp. IC
7. (A) Slide valve aft and remove. AC]Joa], IC
8. (A) Remove and discard four packings. IC, IC

INSTALLATION OF FUEL PUMP NO. 4

1.
2.
3.
4.
3.

(A) Lubricate and install packing (M25988/1-904) on elbow. IC, IC
(A) Install elbow on pump. Do not torque jamnut. IC
(A) Prepare pump and bulkhead mating surfaces for electrical bonding. IC
(A) Connect electrical connector. IC
(A) Position pump on bulkhead. IC

192

6. (A,B) Install four bolts, four washers, four sealing washers, four washers, and four

nuts.

Torque to 50-100 inch-pounds.

7. (A) Connect sense tube.
Torque to 72-78 inch-pounds.

8. (A) Torque jamnut to 72-78 inch-pounds.

IC
AC[pp]
IC
AC[pp]
AC[pp]

9. (A) Lubricate and install four packings (M25988/1-226), two on connection tube,

one on union, and one on pump.

IC, IC

10. (A) Lubricate and install two packings (M25988/1-017), one on ejector pump motive

flow tube and one on connection tube.
11. (A) Position connection tube and two sleeves and install two couplings.

12. (A) Install clamp, two bolts, and two nuts.
Torque to 40-60 inch-pounds.

13. (A) Position sleeve and install coupling.

IC, IC
IC, IC

IC
AClpp]
IC, IC

14. (A) Lubricate and install four packings (M25988/1-017), two on turbine pump motive

flow tube, one on connection tube, and one on turbine pump fuel fitting.

IC, IC

15. (A) Position turbine pump motive flow tube and two sleeves and install two couplings.

IC, IC
16. (A) Position clamp and install bolt. IC, IC
Torque to 40-60 inch-pounds. AC|pp]
17. (A) Install access panel 3426 using 45 bolts. (General Maintenance) IC
18. (A) Install access panel 3428 using 45 bolts. (General Maintenance) IC
19. (A) Perform fuel tank access panel leak check. (General Maintenance) IC

CHECKOUT OF FUEL FLOW PROPORTIONER PRESSURE SWITCH
1. (B) Connect hydraulic test stand to system A. (General Maintenance) IC
2. (B) Position FFP control valve handle (access door 3216) to up (open) position. IC
3. (A) Position main power switch to MAIN PWR. IC
4. (A B) Increase hydraulic pressure to 3000 psig as indicated on HYD PRESS A indi-
cator. AC|pp]
5. (A) Position ENG FEED switch to NORM. IC
6. (A) Inspect pressure switch. IC
7. (A) Position ENG FEED switch to OFF. IC
8. (A) Position main power switch to OFF. IC
9. (B) Disconnect hydraulic test stand. (General Maintenance) IC
REMOVAL OF WING FUEL PUMPS

1. (A) Remove access cover 5419 (left) or 6420 (right). (General Maintenance) IC
2. (A) Raise handle on cartridge and turn to unlock position. AC]Joa], ACJpp]
3. (A) Pull straight up on handle until cartridge is clear of housing. AT[until]
4. (A) Remove and discard four packings. IC, IC

193

B.3 [ITL SIMA, 1997]

Mitre saw assembly line instructions

http://speckle.ncsl.nist.gov/"sima/vim/

Build the table assembly.

1.
2
3
4.
5
6

9.
10.
11.
12.
13.

14.

Press the button onto the spindle lock. AC|pp]
. Slip an O-ring onto the locking pin. AC|pp]
. Put the tip cover on the detent spring. 1C
Put a table on the fixture such that the bottom faces up. IC[ms]
. Pound the miter pointer on with a hammer. AC|pp]
. Align the 2 wear plates along the edges and screw them down with 4 screws. IC,
AC[p]

Insert the knob, put the clamp plate on just below it, and drive the 2 screws. IC
IC, ACJoa]

)

Set the detent spring in place, screw it in with 2 screws, and flip the fixture. IC,
AC[p], IC

Attach the bevel pointer and bracket with a screw. I1C
Near the trunnion end, drive the 2 adjusting screws to the nut. AC|pp]
Flip the fixture to vertical and grease the trunnion’s place. IC, AC]Jarg|
Apply Loctite to the stud and drive it into the end of the table. ~ AC[pp], AC|pp]
Put the trunnion in position and screw it into place. IC, AC|pp]
(a) Make sure that the trunnion can easily rotate. IC
Place the assembly on the next line on the belt conveyor. I1C

Put the assembly onto the base.

1. Get a base and grease its hole with a brush. IC, ACJarg]

2. With the rounded part of the base toward you, push the curved spring in its slot.
ACIp]

3. Set the table assembly on top of the base such that the knob faces you. IC[ms]

4. Get a dial indicator. IC

(a) Occasionally calibrate the dial indicator on the flat surface provided. IC

5. Place the detent plate and drive the 3 screws into it just a little bit. IC, AC|pp]

6. Rotate the table to the ”0” mark on the detent plate and tighten the knob. AC|[pp]

3

IC
7. Put the dial indicator on the table and level the trunnion. IC, IC
8. Place the base fence and drive the 4 screws. IC, ACJoa]
(a) Be sure to drive the inner 2 screws first to prevent warping. IC[pc-to:ACloa]]
9. Place the left fence in its slot. IC
10. Put the lower bevel knob on the fence. IC
11. Place the clamp plate and upper bevel knob on the fence. I1C

194

12. Tighten both knobs with a screw gun. IC
(a) With the dial indicator, make sure that the fence is perpendicular to the table.

IC
(b) Check the table’s tightness. IC
13. According to your shift, mark the unit with a marker. 1C
14. Affix the left and right warning labels to the detent plate. IC

195

Appendix C

PAR translation for SPUD

Here is pseudo-code, written loosely in C notation, for translating the PAR feature struc-
ture representation into modal first-order logic for SPUD. Only the result attribute is
considered common knowledge (thus using the C modal operator); all other action infor-
mation is considered private to the system (the S modal operator). A few simple functions

are assumed to be defined for reading in the feature structure notation:

getVal(string) returns the value for the attribute named by string in the top-level
feature structure. The returned value could be a feature structure, a list, an atom

(such as a string or a number), or the NULL object if the attribute is not found.

getValInFS(FS, string) returns the value for the attribute named by string in the
feature structure named by FS. The NULL object is returned if the attribute is not

found.

getValInList(list, string) returns the value for the item in 1ist identified by string.

The NULL object is returned if the identifier is not found.
nonEmpty(var) returns false if var is the NULL object and true otherwise.

The parts of PAR which are not used at all in this implementation are ignored, but could

be translated in the same fashion.

196

START

ACTID = getVal("id");
if (!nonEmpty(ACTID)) ACTID = assignID();

DTID = getVal("during");
if (nonEmpty(DTID)) printf("S during(¥%s, %s).\n", ACTID, DTID);

RTID = getVal("result");

if (nonEmpty(RTID)) {
printf ("C result(%s, %s).\n", ACTID, RTID);
printf ("S meets(%s, %s).\n", RTID, DTID);

}

PART = getVal("participants");
if (nonEmpty(PART)) {
AGID = getValInFS(PART, "agent");
if (nonEmpty(AGID))printf("S agent(%s, %s).\n", ACTID, AGID);

OBJFS = getValInFS("objects");
if (nonEmpty(0BJFS)) {
IID = getLabelledValInFS(OBJFS, "instrument");
if (nonEmpty(IID)) printf("S instrument(%s, %s).\n", ACTID, IID);
}
}

CS = getVal("core semantics");
if (nonEmpty(CS)) {
PREC = getVallnfs(CS, "precondition");
if (nonEmpty(PREC)) printf ("S postcondition(%s, %s).\n", ACTID, PREC);

POSTC = getValInfs(CS, "postcondition");
if (nonEmpty(POSTC)) printf("S postcondition(%s, %s).\n", ACTID, POSTC);

MOTION = getValInFS(CS, "motion");
if (nonEmpty(MOTION)) {

MOBJ = getValInFS(MOTION, "object");

MTYPE = getValInFS(MOTION, "type");

printf ("S motion(%s, %s, %s).\n", ACTID, MOBJ, MTYPE);
}

FORCE = getValInFS(CS, "force");
if (nonEmpty(FORCE)) {
FOBJ = getValInFS(FORCE, "object");
printf ("S force(%s, %s).\n", ACTID, FOBJ);

FMAG = getValInFS(FORCE, "magnitude");
printf ("S magnitude(%s, %s).\n", ACTID, FMAG);
}
}

197

SA = getVal("subactions");
if (nonEmpty(SA)) {

SAID = getValInFS(SA, "head");

if (nonEmpty(SAID)) printf ("S subactions(%s, %s).\n", ACTID, SAID);
}

NAID = getVal("next action");
if (nonEmpty(NAID)) printf("S nextAction(¥%s, %s).\n", ACTID, NAID);

PAID = getVal("previous action");
if (nonEmpty(PAID)) printf("S prevAction(%s, %s).\n", ACTID, PAID);

PARENTID = getVal("parent action");
if (nonEmpty(PARENTID)) printf("S parent(%s, %s).\n", ACTID, PARENTID);

if (definedAction(SAID)) insertTimeReln("starts", ACTID, SAID).
if (!'nonEmpty(NAID)) insertTimeReln("finishes", ACTID, PARENTID).

END

198

Index

action representation, 55 63
improving, 141
independently-motivated, 3
PAR, 10, 56 59
PAR translation, 59
step predicate, 96
substep predicate, 97
time intervals, 60—61

actions
accomplishments, 15
achievements, 15
activities, 15
classes, b
concreteness, 62—63
culmination, 5, 17
descriptions, 5
instances, 5
interactions and termination, 40
interactions between, 8
termination, 61 62

adverbs, 38
as source of termination, 43

agent expertise, 63 71

experience levels, 64-65

199

communicative goals, 31
action relations, 104
and effective instructions, 125
and the SPUD algorithm, 93
implementation issues, 126
unique identification, 91 93
computation time, 123
conjunction
of sentences, see discourse segments,
with multiple sentences
of verb phrases, 90
corpus analysis, 26
culmination, see action, culmination
acquired, 37

inherent, 36

description logics, 19
discourse segments
for emphasizing sub-actions, 87
implementation of, 78-79
with multiple sentences, 90-91
distractors, 2, 91
domain representation, 32
domain statements, 91

dynamic semantics, 19

effective instructions, 33
and communicative goals, 125
seeinstructions, effective, 1
evaluation criteria, see implementation,
evaluation criteria
events, 16
culmination, see actions, culmination

tripartite structure, 17

feature structures, 19
first-order logic (FOL), 20
free adjuncts, 39

as source of termination, 43

generation instances, 95-96
generation process

example, 101

implementation
evaluation criteria, 142
scalability, 143
implementation issues, 125-126
algorithm modifications, 126
communicative goals, 126
designing trees, 125
stylistic preferences, 125
instructions, 5
effective, 1
instruction step, 5, 35

step-by-step, 6, 35

language-neutrality, 32

200

lexical choice, 21-23
lexical items
implementation of, 74 76
multi-clausal, 84
linguistic realization, 32
LTAG, 26
adjunction, 27
alpha trees, 27
beta trees, 27

example of tree operations, 28

means clauses, 45
implementation of, 86

modal logic, 20

modal operators, 21

morphological processing, 31

noun phrases
for empty subject, 81

implementation of, 81 84

object representation, 52—-55
objects

abstract, 55

physical, 52

properties, 53

reasoning about, 54

PAR, see action representation, PAR
predicate-argument structure, 7
prepositional phrases, 38

implementation of, 81

purpose clauses
coding, 39
fronted, 24, 46, 87 88
implementation of, 86—88
means clauses,
seemeans clauses86

non-fronted, 24, 46, 86—87
referring expressions, 2

scalability, see implementation, scalabil-
ity
sentence structure
implementation of, 79
sources of termination
analysis, 43-49
SPUD, 11
algorithm, 91-93
possible modifications, 126, 144
stylistic preferences, see also views of ac-
tions
implementation issues, 125
syntactic constructions

implementation of, 76 78

TAG, 26

temporal relations, 17
finishes, 17
meets, 17
starts, 17

termination

acquired, 37

201

termination conditions, 4, 47
termination information, 2
time intervals, see action representation,

time intervals

until clauses, 40, 47

implementation of, 88

verb arguments, 38

as source of termination, 43
verb particles, 38

as source of termination, 44
verbs

implementation of, 79 81
views of actions, 84-85

complex, 85

elaborate, 85

purpose, 85

Epilogue

Paraphrasing from the end of Marc Moens’ dissertation [Moens, 1987], writing a disserta-

tion seems to be an activity which does not culminate; at some point, it’s just over.

Colophon

This dissertation was typeset using INTEX(2e) with the following style files or packages:
e the standard report style file,
e the 11pt style file,

e a version of the penndiss style file (mostly recently modified by I. Dan Melamed

and Jeff Reynar in April 1998), used to conform to Penn’s dissertation requirements,

e the lingmacros style file (modified 4/1/91 by Emma Pease), used for typesetting

example sentences,
e the epsf style file for including encapsulated PostScript files,

e the covingtn style file (Michael A. Covington’s linguistic macros, November 1992),

used for typesetting feature structures,

e the QobiTree package (written by Jeffrey M. Siskind), used for typesetting syntactic

trees,
e the aaai-named style file for typesetting citations and the bibliography, and

e the makeidx style file and makeindex Unix program, used for making the index.

202

